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Robust locally linear embedding
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Abstract

In the past few years, some nonlinear dimensionality reduction (NLDR) or nonlinear manifold learning methods have aroused a great deal
of interest in the machine learning community. These methods are promising in that they can automatically discover the low-dimensional
nonlinear manifold in a high-dimensional data space and then embed the data points into a low-dimensional embedding space, using
tractable linear algebraic techniques that are easy to implement and are not prone to local minima. Despite their appealing properties,
these NLDR methods are not robust against outliers in the data, yet so far very little has been done to address the robustness problem. In
this paper, we address this problem in the context of an NLDR method called locally linear embedding (LLE). Based on robust estimation
techniques, we propose an approach to make LLE more robust. We refer to this approach as robust locally linear embedding (RLLE).
We also present several specific methods for realizing this general RLLE approach. Experimental results on both synthetic and real-world
data show that RLLE is very robust against outliers.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Dimensionality reduction is concerned with the prob-
lem of mapping data points that lie on or near a low-
dimensional manifold in a high-dimensional data space to a
low-dimensional embedding space. Traditional techniques
such as principal component analysis (PCA) and multidi-
mensional scaling (MDS) have been extensively used for
linear dimensionality reduction. However, these methods
are inadequate for embedding nonlinear manifolds.

In recent years, some newly proposed methods such as
isometric feature mapping (Isomap) [1], locally linear em-
bedding (LLE) [2,3], and Laplacian eigenmap [4,5] have
aroused a great deal of interest in nonlinear dimensional-
ity reduction (NLDR) or nonlinear manifold learning prob-
lems. Unlike previously proposed NLDR methods such as
autoassociative neural networks which require complex op-
timization techniques, these new NLDR methods enjoy the
primary advantages of PCA and MDS in that they still make
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use of simple linear algebraic techniques that are easy to
implement and are not prone to local minima.

Despite the appealing properties of these new NLDR
methods, they are not robust against outliers in the data.
Although some extensions have been proposed to the orig-
inal methods [6–12,3,13–15], very little has yet been done
to address the outlier problem. Among the extensions pro-
posed is an interesting extension of LLE proposed by Teh
and Roweis, called locally linear coordination (LLC) [13],
which combines the subspace mixture modeling approach
with LLE. A recent work by de Ridder and Franc [16] at-
tempted to address the outlier problem by proposing a robust
version of LLC based on a recent development in the statis-
tics community called mixtures of t-distributions. However,
although the robust version of LLC is less sensitive to
outliers than LLC, the authors found that it is still more
sensitive to outliers than ordinary LLE. Zhang and Zha [17]
proposed a preprocessing method for outlier removal and
noise reduction before NLDR is performed. It is based on a
weighted version of PCA. However, the method for deter-
mining the weights is heuristic in nature without formal jus-
tification. More recently, Hadid and Pietikäinen [18] studied
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the outlier problem and proposed a method to make LLE
more robust. However, their method is also heuristic in na-
ture. Moreover, their method is based on the assumption that
all outliers are very far away from the data on the manifold
and they themselves form distinct connected components in
the neighborhood graph. Hence the outliers have no effect
on the reconstruction of the manifold data points. Appar-
ently, this assumption is not always true for many real-world
applications.

In this paper, we address the outlier problem in the con-
text of LLE. Based on robust PCA techniques, we propose
an approach to make LLE more robust. The rest of this pa-
per is organized as follows. In Section 2, we first give a
quick review of the LLE algorithm. In Section 3, the sensi-
tivity of LLE to outliers is illustrated through some examples
based on synthetic data. A new approach called robust lo-
cally linear embedding (RLLE) is then presented in Section
4 together with several specific realizations of the approach.
Section 5 shows some experimental results to demonstrate
the effectiveness of RLLE in the presence of outliers. Some
concluding remarks are given in Section 6.

2. Locally linear embedding

Let X = {x1, x2, . . . , xN } be a set of N points in a high-
dimensional data space RD . The data points are assumed to
lie on or near a nonlinear manifold of intrinsic dimension-
ality d < D (typically d>D). Provided that sufficient data
are available by sampling well from the manifold, the goal
of LLE is to find a low-dimensional embedding of X by
mapping the D-dimensional data into a single global coordi-
nate system in Rd . Let us denote the corresponding set of N
points in the embedding space Rd by Y={y1, y2, . . . , yN }.

The LLE algorithm [3] can be summarized as follows:

(1) For each data point xi ∈ X:

(a) Find the set Ni of K nearest neighbors of xi .
(b) Compute the reconstruction weights of the neigh-

bors that minimize the error of reconstructing xi .

(2) Compute the low-dimensional embedding Y for X that
best preserves the local geometry represented by the
reconstruction weights.

Step (1)(a) is typically done by using Euclidean distance
to define neighborhood, although more sophisticated criteria
may also be used.

Based on the K nearest neighbors identified, step (1)(b)
seeks to find the best reconstruction weights. Optimality is
achieved by minimizing the local reconstruction error for xi

Ei =
∥∥∥∥∥∥xi −

∑
xj ∈Ni

wij xj

∥∥∥∥∥∥
2

, (1)

which is the squared distance between xi and its reconstruc-
tion, subject to the constraints

∑
xj ∈Ni

wij = 1 and wij = 0
for any xj /∈Ni . Minimizing Ei subject to the constraints
is a constrained least squares problem. After repeating steps
(1)(a) and (1)(b) for all N data points in X, the reconstruc-
tion weights obtained form a weight matrix W =[wij ]N×N .

Step (2) of the LLE algorithm is to compute the best low-
dimensional embedding Y based on the weight matrix W
obtained. This corresponds to minimizing the following cost
function:

� =
N∑

i=1

∥∥∥∥∥∥yi −
∑

xj ∈Ni

wij yj

∥∥∥∥∥∥
2

, (2)

subject to the constraints
∑N

i=1 yi =0 and 1/N
∑N

i=1 yiyT
i =

I, where 0 is a column vector of zeros and I is an identity
matrix. Note the similarity of this equation to (1). Based on
W, we can define a sparse, symmetric, and positive semidef-
inite matrix M as follows:

M = (I − W)T(I − W).

Note that (2) can be expressed in the quadratic form,
� = ∑

i,j Mij yT
i yj , based on M = [Mij ]N×N . By the

Rayleigh–Ritz theorem [19], minimizing (2) with respect to
the yi’s in Y can be done by finding the eigenvectors with
the smallest (nonzero) eigenvalues.

Fig. 1 shows how LLE works in finding the low-
dimensional embedding of the S curve manifold from R3

to R2.

3. Sensitivity of locally linear embedding to outliers

In this section, we will show through examples how the
LLE results can be affected by outliers in the data. We use
three artificial data sets that have been commonly used by
other researchers: Swiss roll (Fig. 2), S curve (Fig. 3), and
helix (Fig. 4). For each data set, uniformly distributed ran-
dom noise points that are at least at a certain distance from
the data points on the manifold are added as outliers. Table
1 shows the parameter settings used in these experiments.
The parameters include the dimensionality of the data space
D, the dimensionality of the embedding space d (i.e., intrin-
sic dimensionality of the nonlinear manifold), the number
of nearest neighbors K, the number of clean data points on
the manifold, the number of outlier points, and the mini-
mum distance between randomly generated outliers and data
points on the manifold.

As we can see from subfigures (b) of Figs. 2–4, LLE can-
not preserve well the local geometry of the data manifolds
in the embedding space when there are outliers in the data.
In fact, in the presence of outliers, the K nearest neighbors
of a (clean) data point on the manifold may no longer lie
on a locally linear patch of the manifold, leading to a small
bias to the reconstruction. As for an outlier point, its neigh-
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