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a b s t r a c t

The paper analyzes the connectivity information (more precisely, numbers of tunnels and their
homological (co)cycle classification) of fractal polyhedra. Homology chain contractions and its combi-
natorial counterparts, called homological spanning forest (HSF), are presented here as an useful
topological tool, which codifies such information and provides an hierarchical directed graph-based
representation of the initial polyhedra. The Menger sponge and the Sierpiński pyramid are presented as
examples of these computational algebraic topological techniques and results focussing on the number
of tunnels for any level of recursion are given. Experiments, performed on synthetic and real image data,
demonstrate the applicability of the obtained results. The techniques introduced here are tailored to self-
similar discrete sets and exploit homology notions from a representational point of view. Nevertheless,
the underlying concepts apply to general cell complexes and digital images and are suitable for
progressing in the computation of advanced algebraic topological information of 3-dimensional objects.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The Polish mathematician Waclaw Sierpiński described properties
of a self-similar planar set (see [26]), today known as the Sierpiński
sieve. A generalization into 3-dimensional space leads to the Sierpiński
pyramid. The Austrian mathematician Karl Menger also studied a
recursively defined set, today known asMenger sponge (see [16] and
Fig. 1), when discussing the notion of topological dimension.

In this paper we consider recursively defined polyhedra, called
fractal sets. Recursion details are given below. The Menger sponge
or Sierpiński pyramid are examples of such fractal sets.

Working within a semi-continuous context, we use the notion
of a minimal spanning tree (MST) of a finite set of points in Rn, as
introduced in [22,23], to provide topological information of the
fractal underlying set, up to a numerically computable resolution.

In particular, connectedness, disconnectedness and the number
of connected components with non-zero diameter are properties
that are identified and calculated in [23]. A logical question that
arises here when investigating ways to formalize the relationship
between the homology of a set of R3, and the homology of a finite
point-set approximation of it, is how to distinguish between

simply-connected sets and those with holes (i.e. tunnels or
cavities).

Within the semi-continuous context of cell complexes, there
are two approaches for the computation of comprehensive homo-
logical information:

1. The (co)differential approach: Here, only one 2-nilpotent linear
map (the canonical differential operator of the cell complex) is
involved, and linear algebra for reducing matrices into a Smith
Normal Form is exhaustively used (see e.g [12,19]).

2. The integral approach: Here, two 2-nilpotent linear maps (differ-
ential and integral operators) are involved. In the integral approach,
one constructs a degree þ1 linear map (integral operator) which
records the information of the algebraic homological deformation
process, reducing thewhole cell complex to a minimal homological
expression (see e.g. [10]).

In particular, using the differential and integral operators, one can
determine homology groups among other topological properties.

For example, the method of computing connected components
using the spanning forest of the 1-skeleton of the cell complex is a
relevant example of integral homological computation. We apply
here an integral homological approach, allowing a quantitative
analysis of high degrees of connectivity of cell complex versions of
fractals, for an arbitrary level of recursion. We mainly focus on the
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number of tunnels and cavities, but the techniques developed here
can be employed to create a calculus with cycles and co-cycles
within the fractals.

A cycle calculus allows us, for example,

1. to topologically classify any cycle or co-cycle within the object,
2. to determine whether a cycle is contractible within the object

and, in the positive case, to obtain a geometric deformation that
reduces the cycle into a point,

3. to topologically transform, if possible, one cycle into another
within the fractal,

4. to determine a shortest path between two points in the given
fractal, considering a defined distance function, and

5. to compute (co-)cyclic operations having (co-)cycles of the
objects as input or output.

Starting with a hierarchical directed graph representation, it is
possible to proceed with cycle-calculus on fractals. This calculus
has been introduced in [17,18], by defining coordinate-based
forests (i.e. graphs which are in general a set of trees). These direct
graphs extent to higher dimensions spanning forests as known
from labelling of connected components (0th-homology group) of
a digital object. Due to this fact, they are called homological
spanning forests (HSFs). These structures can also be generalized
for applications in the domain of tree–cotree decompositions of
combinatorial surfaces; see [6] and [7].

In this paper we recall the definition of HSFs, give relevant
examples for fractal sets, and manipulate their associated chain-
homotopy equivalence for computing topological properties. For
developing this approach, different methodologies and theories
have been combined, such as discrete Morse theory (see [8]),
effective homology (see [25]), AT-model theory (see [10]), and
homological algebra (see [17]).

The techniques introduced here are tailored to fractals, but the
underlying concepts also apply to digital images and data. The
development of new topological representations is essential for
advancing in solid and physical modelling [3,4]. It appears to be a
feasible short-term goal to design a novel mapping from mathe-
matical solid models to actual computer representations for
extensive geometric data as common in 3D imaging, using the
HSF techniques as developed. See the reported experiments at the
end of the paper.

Furthermore, digital topology has various applications in
remote sensing, computer vision, lossless and fractal compression,
and algorithmic pattern recognition. Because our method applies
to fractal and non-fractal cell complexes, the work presented here
is susceptible to be adapted for its use in the previously mentioned
applications.

The paper is structured as follows: Section 2 introduces HSFs
and related basic definitions. Section 3 applies the introduced
topological framework to fractal polyhedra in general. The exam-
ple of the Menger sponge is discussed in Section 4, and those of

the Sierpiński pyramid in Section 5. Experiments are shown in
Section 6. Section 7 concludes.

2. Combining homological with homotopical information

We determine the representative cycles of tunnels in fractal
structures which are embedded into R3. By using HSF structures,
we classify any closed curve in the fractal structure in terms of
homology generators working with coefficients in the field
Z=2Z¼ f0;1g.

A cell complex O consists of i-cells of dimension i, for some iAN.
Given a finite convex cell complex embedded in R3, it is possible to
construct the canonical chain complex associated to a cell complex
O and its homology, called a strong deformation retract in [11], a
reduction in [25], or a chain contraction in [5]. In fact, a chain
contraction of this kind, called homology chain-integral contrac-
tion (See [20]), condenses the Z=2Z homological information of
the cell complex O and it can be completely described by only
using two chain operators. One of them is the (unique) chain
boundary operator for O. The other is a (non-unique) two-
nilpotent chain homotopy called chain integral operator.

In order to take advantage of the geometric nature of the cell
complex, we combine homological and homotopical information of
O, for constructing the previous homology chain contraction by
using the combinatorial boundary operator of O and directed graphs
whose nodes are the centroids of the (convex) cells. For example, if
the homotopical information is given in terms of a gradient vector
field V on the cell complex O (see [8,14]), it is straightforward to
construct a chain contraction from the chain complex O to a smaller
(in terms of numbers of basis generators) algebraic object. In the
case having an optimal vector field V, this last object is the
Z=2Z-homology graded module of O. Summing up, we search here
for an “economical” combinatorial coding of a homology chain
integral operator (also called, AT-model, [9]). This “coding” will be
given here in terms of hierarchical coordinate-based directed
graphs, called homological spanning forest (HSF). This paper dis-
cusses the constructions of HSF structures for some fractal sets, to
be used for determining homology chain contractions.

The directed edges of an HSF are part of the frontier of the cell
complex which consists of several “connected” cell pairings. A cell
pairing is a directed edge which goes from an i-cell to an incident
(iþ1)-cell of the complex. Let us note that in a general HSF, two
cell pairings could share the i-cell or the (iþ1)-cell components.
The links between these cell pairings are also directed edges from
the (iþ1)-cell tail of one cell pairing to the i-cell source of the
other. When the HSF is derived from a optimal discrete gradient
vector field V over O (that is, with a minimum number of critical
cells), the cell pairings are disjoint pairs of incident cells. In this
case, the connected directed graphs (DG for short) of the HSF
can be described by the union of different non-trivial closed
V-paths [8].

Fig. 1. Menger sponge at recursion levels 0–3, from left to right (published by Solkoll in 2005 in the public domain; here shown color-inverted). (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)
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