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a b s t r a c t

In this paper, we present a fully automated multimodal Curvelet-based approach for textured 3D face
recognition. The proposed approach relies on a novel multimodal keypoint detector capable of
repeatably identifying keypoints on textured 3D face surfaces. Unique local surface descriptors are then
constructed around each detected keypoint by integrating Curvelet elements of different orientations,
resulting in highly descriptive rotation invariant features. Unlike previously reported Curvelet-based face
recognition algorithms which extract global features from textured faces only, our algorithm extracts
both texture and 3D local features. In addition, this is achieved across a number of frequency bands to
achieve robust and accurate recognition under varying illumination conditions and facial expressions.
The proposed algorithm was evaluated using three well-known and challenging datasets, namely FRGC
v2, BU-3DFE and Bosphorus datasets. Reported results show superior performance compared to prior
art, with 99.2%, 95.1% and 91% verification rates at 0.001 FAR for FRGC v2, BU-3DFE and Bosphorus
datasets, respectively.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Despite decades of research in automatic face recognition, such a
task still remains challenging in the presence of large variations in
illumination, pose, facial expression or occlusion [1,2]. 2D face
recognition approaches have been extensively investigated to handle
these challenges [1]. However, they still suffer from sensitivity to
variations in illumination, pose and facial expressions. Recent devel-
opments in low cost 3D imaging devices have the potential to
address such face recognition challenges. This is because 3D app
roaches have been shown to be less sensitive to illumination and
pose variations [2]. In addition, 3D facial images provide structural
information such as geodesic distances and surface curvatures, which
can greatly benefit the recognition task [3]. However, facial expres-
sions still remain a major challenge for 3D face recognition
approaches because they result in notable facial deformations [2].

Face recognition approaches combining both 2D and 3D facial
images can achieve more robust recognition compared to app-
roaches using either 3D or 2D modality alone [2]. Generally, the
matching process is performed separately with respect to the data
type (2D and 3D faces) before the results are fused at the score

level. For example, Chang et al. [9] fused the matching scores
obtained from applying a PCA-based approach for each individual
modality (3D and 2D facial images). For a small dataset (951 images
with neutral expressions), reported results were 93% and 99%
recognition rates for 3D and multimodal approaches, respectively.
Although Bowyer et al. [2] showed that the combination of 2D and
3D data (multimodal 2Dþ3D approaches) gives greater perfor-
mance compared to any single modality, it is still not clear whether
3D approaches outperform 2D approaches. In this paper, we
propose a novel Curvelet-based multimodal approach for textured
3D face recognition.

1.1. Related works

In general, face recognition approaches, whether 2D, 3D or
multimodal, can be classified into three main categories [1]:

(i) Holistic matching algorithms which extract global features
from the whole face. Eigenfaces [4] and Fisherfaces [5] are well-
known examples of this category. Other works such as Lu et al. [6],
and Mohammadzade et al. [7] applied Iterative Closest Point (ICP)
or its modified versions to match face surfaces. In general, the
latter is highly affected by variations in illumination, pose, scale
and facial expressions [8].

(ii) Feature-based matching algorithms which rely on matching
local features or features associated to specific facial regions (e.g.
eyes and nose) rather than matching the full face. Zhong et al. [9]
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employed Gabor features to extract intrinsic discriminative infor-
mation from 3D faces. A Learned Visual Codebook (LVC) was then
constructed using K-means clustering. Berretti et al. [3] extracted
isogeodesic stripes from 3D faces and then represented these
stripes using a 3D Weighted Walkthroughs (3DWWs) descriptor.
For matching, a graph-based matching algorithm was applied to
different faces. Creusot et al. [10] and Berretti et al. [11] proposed
methods for extracting distinctive keypoints/landmarks for robust
recognition. In general, feature-based matching algorithms are
known to be more robust to facial expressions, pose, illumination,
scale and occlusions variations [8]. This is because they can
exclude those facial regions that could be most affected by
perturbations such as changes in facial expression or spurious
elements [3]. However, there is no set of face regions (local
features) that is perfectly invariant across all facial expressions [2].

(iii) Hybrid matching algorithms which exploit a combination
of both holistic and local feature-based matching. Huang et al. [12]
proposed a Multi-Scale Local Binary Pattern (MS-LBP) depth map
to represent the 3D facial surface in conjunction with the Shape
Index (SI) map. SIFT algorithm was then applied on both maps to
extract local features. The hybrid matching algorithm then carried
out feature-based matching on local feature and holistic matching
based on the facial component and configuration constraint. The
combination of holistic and local feature-based matching has the
potential to give better performance, but at the cost of greater
computational cost.

Multi-resolution algorithms have been widely used in conjunc-
tion with the aforementioned feature-based matching, Holistic
matching and hybrid matching. Jing et al. [13] proposed a 2D face
recognition approach based on Fractional Fourier transform and
discrimination analysis technique. They firstly adjusted the angle
value of Fractional Fourier transform using 2-dimensional separ-
ability judgement. A reformative Fisherface method was then
applied to extract features. Fauqueur et al. [14] and Bendale et al.
[15] employed Complex Wavelet Transform (DTCWT) for keypoint
detection. Mandal et al. [16] applied Curvelet transform along with
two different dimensionality reduction algorithms (PCA-LDA) for
2D face recognition. A set of coefficients characterized by high
variance was firstly selected and then projected by PCA-LDA to a
lower dimensional space. Rziza et al. [17] proposed to extract local
features from 2D faces mapped to Curvelet domain by dividing
each Curvelet subband into a set of equally sized blocks. In order to
define local features, each block was represented by its mean,
variance and entropy values. All features were then combined and
projected by LDA.

Compared to other transforms, Curvelet transform is strongly
anisotropic and its needle-shaped elements provide a high direc-
tional sensitivity to represent curved singularities in images. In
contrast, Wavelet transform exhibits a good representation only at
point singularities, because it has a poor directional sensitivity
(isotropic base function). Other directional transforms such as
Dual-Tree Complex Wavelet Transform (DTCWT) and Gabor Wave-
lets perform better than Wavelets but still have limited directional
selectivity. Finally, the Ridgelet transform is only suitable for
representing global straight-line singularities in objects, which
are rarely found in real applications [18,19].

1.2. Paper contributions

Although Curvelet transform provides a powerful framework to
extract distinctive surface features. Curvelet-based face recogni-
tion approaches have been so far mainly limited to holistic
matching of 2D global features extracted from the whole face
[16,20]. Recently, we proposed a multimodal face identification
approach based on Curvelet transform to extract features from
semi-rigid regions (eyes-forehead and nose) [21]. Since these

regions are less sensitive to facial expressions, the proposed
approach achieves good identification rates under different facial
expressions. However, these regions were segmented using static
masks which cannot accurately extract eyes-forehead and nose
regions for all faces, especially from different datasets. Further-
more, the locality of the extracted features is low, making them
sensitive to deformations resulting from facial expressions.

To address these limitations, this paper proposes a novel
multimodal approach that introduces the following contributions:

� A multimodal keypoint detector to extract robust and distinc-
tive keypoints from textured 3D faces. The identification of
these keypoints is carried out in the Curvelet domain after
decomposing each face (depth and texture information) into a
set of scale and angle decompositions. Identified keypoints are
associated to local face surfaces rich with geometrical and
textures features. Because these keypoints are extracted sepa-
rately across different frequency bands, this allows us to
identify more distinctive keypoints on local surfaces associated
with high variations. As a result, our keypoint detector is
shown to exhibit high repeatability in textured 3D faces.

� A method has been proposed to measure the repeatability of
the detected keypoints in the Curvelet domain. The proposed
method builds an accumulated map combining all Curvelet
coefficients from different subbands. This map facilitates find-
ing the repeatability between detected keypoints in different
subbands without requiring to inverse back these keypoints to
the spatial domain. A keypoint is considered to be repeatable if
it appears at nearly the same location in two accumulated maps
(corresponding to two faces) of the same subject.

� A multimodal local surface descriptor to capture highly
descriptive local features around extracted 2D and 3D key-
points. In contrast, previous works using Curvelet transform,
such as [16], extracted 2D features with holistic matching. Here,
our algorithm extracts both 2D and 3D local features around
the detected keypoints by including all directional decomposi-
tions in the mid-bands to precisely represent geometric/texture
features while minimizing sensitivity to noise. As a result, our
multimodal surface descriptor is shown to achieve superior
performance.

Preliminary results of this approach appeared in [22], which
reports only the 3D modality. Furthermore, extensive experiments
have been carried out for each feature scale (scale 2, scale 3 and
combined scale 2þ3) and each modality (2D, 3D and multimodal
2Dþ3D) on three datasets (FRGC v2, BU-3DFE and Bosphorus)
under different scenarios including facial expressions, pose varia-
tions and time laps between target and query faces.

1.3. Paper organization

The rest of this paper is organized as follows. Section 2 gives a
brief overview of the Curvelet transform and its digital form.
Section 3 details the proposed 3D/2D keypoint detection algo-
rithm. Section 4 describes the extraction and construction of our
3D/2D local features. Details of the matching algorithm are given
in Section 5. Experimental results are reported in Section 6. Finally,
conclusions are drawn in Section 7.

2. Digital Curvelet transform

The Curvelet transform, originally developed in 1999 by Donoho
and Duncan [23], is a multi-scale and multi-directional representa-
tion with highly anisotropic behaviour. The second generation of
Curvelet transform, reported in [24], uses a frequency partition
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