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a b s t r a c t

An illumination-invariant background model for detecting objects in dynamic scenes is proposed. It is
robust in the cases of sudden illumination fluctuation as well as burst motion. Unlike the previous works,
it uses the co-occurrence differential increments of multiple pixel pairs to distinguish objects from a
non-stationary background. We use a two-stage training framework to model the background. First,
joint histograms of co-occurrence probability are employed to screen supporting pixels with high
normalized correlation coefficient values; then, K-means clustering-based spatial sampling optimizes
the spatial distribution of the supporting pixels; finally the background model maintains a sensitive
criterion with few parameters to detect foreground elements. Experiments using several challenging
datasets (PETS-2001, AIST-INDOOR, Wallflower and a real surveillance application) prove the robust and
competitive performance of object detection in various indoor and outdoor environments.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Detecting moving objects plays a very important role in an
intelligent surveillance system. It is often integrated with various
tasks, such as tracking objects [1,2], recognizing their behaviors
[3,4] and alerting when abnormal events occur [5]. However,
object detection suffers from non-stationary scenes in surveillance
videos, especially in two potentially serious cases: (1) sudden
illumination variation, such as outdoor sunlight changes and
indoor lights turning on/off; (2) burst physical motion, such as
the motion of indoor artificial objects, which include fans, escala-
tors and auto-doors. If the actual background includes a combina-
tion of any of these factors, it becomes even more difficult to
perform detection. State-of-the-art algorithms [6–10] can handle
gradual illumination changes by updating the statistical back-
ground models progressively as time goes by. In practice, however,
this kind of model update is usually relatively slow to avoid
mistakenly integrating foreground elements into the background
model, making it difficult to adapt to sudden illumination changes
and burst motion.

In this study, we propose a novel framework to build a back-
ground model for object detection, which is brightness-invariant
and able to tolerate burst motion. We name it Co-occurrence
Probability-based Pixel Pairs (CP3). It is inspired by the previous
work in [11,12]. In the work of Haralick et al. [11], gray-level co-
occurrence matrices (GLCM) were employed to measure the
spatial co-occurrence of pixels to produce an image texture feature
(Haralick feature). In the work of Hashimoto and Saito [12], pixels
with low spatial co-occurrence probability and with high temporal
co-occurrence probability were preferentially extracted as spa-
tially distinctive and temporally stable features to reduce compu-
tational complexity for template matching. In this study, in order
to model the dynamic background, spatial pixel pairs with high
temporal co-occurrence probability are employed to represent
each other by using the stable intensity differential increment
between a pixel pair which is much more reliable than the
intensity of a single pixel, especially when the intensity of a single
pixel changes dramatically over time. A pixel pair consists of each
pixel itself (called target pixel hereafter) and a selected pixel
(called supporting pixel hereafter). As a pixel-wise background
model, the target pixel P refers to all pixels in a scenario. The
supporting pixels are neither arbitrary pixels in the scene, nor pre-
defined fixed local structures around each target pixel; instead, the
supporting pixels are selected based on their statistical stability
with the target pixels.
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The remainder of this paper is organized as follows. In the
next section, some related works are discussed. Section 3 details
the background model. Section 4 presents the object detection
procedure. Section 5 presents the experimental results, and
Section 6 concludes the main contributions of this work.

2. Related work

Since observations of the background in image sequences can
be considered stochastic events, many statistical approaches have
been employed to model effective backgrounds. The former back-
ground modeling approaches can be classified into two categories:
(1) independent pixel-wise modeling, which employs the statis-
tical processing of time-domain observations to each pixel.
(2) Spatial-dependence modeling, which employs principles to
exploit spatial-dependence among pixels to build a local or
global model.

Most of the earlier background modeling approaches tend to
fall into the first category. Wren [6] modeled the observations
(YUV) of each pixel as a single Gaussian probability density
function. To cope with periodic moving background patterns, the
Gaussian mixture model (GMM) [7,13] was proposed. Elgammal
[8] employed kernel density estimation (KDE) as a data-driven
modeling method. Since KDE is a non-parametric model, it is
closer to the real probability distribution than GMM. Hidden
Markov models (HMMs) [14,15] have also been applied to model
the background; topology free HMMs were described and several
state splitting criteria were compared in the context of background
modeling in [14], and a non-adaptive three-state HMM was used
to model the background in [15]. The recent notable pixel-wise
method by Kim [9] presented a real-time algorithm, which
sampled background pixel values and quantized them into com-
pressed codebooks (CBs). To improve the processing efficiency of
the codebooks, Guo [16] presented a hierarchical scheme. All the
above methods use a learning rate function for updating the
background model online. However, because none of these meth-
ods is free from erroneous updating, they have a well-known
trade-off problem: with a low learning rate, they can not adapt to
sudden changes of illumination, e.g., turning on/off a light, while
with a high learning rate, slowly moving objects or temporarily
stopped objects will be detected as background.

The second category uses spatial information to exploit the spatial
dependencies of pixels in the background. Matsuyama [17] proposed
a regional block matching method against varying illumination, and
Seki [18] proposed a co-occurrence-based block correlation method.
The above two methods can only yield coarse region-level detection.
Toyama et al. [19] proposed a three layers algorithm inwhich Weiner
filters were employed. It used region and frame-level information to
verify the pixel-wise background model. Oliver [20] employed eigen-
space decomposition in which the background was modelled by the
eigenvectors corresponding to the largest eigenvalues. Sheikh [10]
used the joint representation of image pixels in a local spatial
distribution (proximal pixels) and colour information to build both
background and foreground KDE models competitively in a decision
framework. Monnet [21] and Zhong [22] built an auto-regressive
moving average (ARMA) model in dynamic scenes, which is used to
incrementally learn (using PCA) and then predict motion patterns in
the scene. Heikkilä and Pietikäinen [23] used a local binary pattern
(LBP) to subtract the background and detect moving objects in real
time. This method models each pixel as a group of adaptive LBP
histograms that were calculated over a predefined circular region
around the pixel. Similarly, the statistical reach feature (SRF) [24]
builds a local texture model for each target pixel to be brightness-
invariant. A recent spatial-dependence approach [25] utilized a
tensor subspace learning algorithm to represent spatial correlations

between pixel values, and modeled appearance changes by incre-
mentally learning a tensor subspace representation by adaptively
updating the sample mean and an eigenbasis for each unfolding
matrix of the tensor.

In our previous research, we proposed a background model
called grayscale arranging pairs (GAP) [26,27] which falls into the
second category. GAP employed an alignment of supporting pixels
for the target pixel which held a stable intensity subtraction in
training frames without any restriction of locations. The intensity
subtraction of the pixel pairs allowed the background model to
tolerate noise and be illumination-invariant. However, this fixed
intensity subtraction influenced the sensitivity of the background
model, especially when the dynamic range was compressed due to
low illumination; it was also not an optimal way to search for
supporting pixels by using a fixed intensity subtraction in that
most co-occurrence pixels were not considered. In addition, the
GAP method mainly focused on illumination-invariance, so that
the dynamic background caused by burst motion was not dis-
cussed sufficiently. In this study, the proposed method addresses
these open problems. Compared with GAP, the proposed method
employs a co-occurrence histogram to describe the relationship of
a pixel pair, which is free from any intensity differences, and
calculates normalized correlation coefficients for measuring the
degree of co-occurrence which can deal with a dynamic back-
ground. It also introduces a spatial clustering operation to select
optimal supporting pixels and then provides a more accurate
parameterized detection criterion instead of a fixed double-sided
threshold.

3. Background modeling

The algorithm is described for gray-scale imagery; however, it
can also be used for colour or multi-modality imagery with minor
modification. Fig. 1 shows the fundamental definitions of the
image data. Suppose we are given a training image sequence
B¼ I1; I2;…; ITf g with a total of T images, and each image has
M¼ U � V pixel positions. In the three-dimensional space
Γ ¼ ðu; v; tÞj1rurU;1rvrV ;1rtrT

� �
, we have U � V � T

intensity values within a gray-scale level range ½0; L�1�. In the
following, the intensities over time at each pixel position are
regarded as samples from a stochastic process. We define P as a
target pixel at location (u, v). The location of P varies to cover all
pixels of a frame, and its intensity sequence over time is denoted
as fptðu; vÞgt ¼ 1;2;…;T . In the same way, we define Q ðu0; v0Þ as an
arbitrary pixel with intensity sequence fqtðu0; v0Þgt ¼ 1;2;…;T at loca-
tion ðu0; v0Þ. For simplicity, we have omitted most of the (u, v) and
ðu0; v0Þ in the following discussion.

Fig. 1. Fundamental definitions of the image data. Target pixel P and an arbitrary
pixel Q with their intensity sequence over time pt and qt.
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