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a b s t r a c t

Spectral clustering has been popular thanks to its ability to extract clusters of varying characteristics
without using a parametric model in expense of high computational cost required for eigendecomposi-
tion of pairwise similarities. In order to utilize its advantages in large datasets where it is infeasible due
to its computational burden, approximate spectral clustering (ASC) methods apply spectral clustering on
a reduced set of points (data representatives) selected by sampling or quantization. This two-step
approach (i.e. finding the representatives and then clustering them) brings new opportunities for precise
similarity definition such as manifold based topological relations, data distribution within the Voronoi
polyhedra of the representatives, and their geodesic distance information, which are often ignored in
similarity definition for ASC. In this study, we propose geodesic based hybrid similarity criteria which
enable the use of different types of information for accurate similarity representation in ASC. Despite the
fact that geodesic concept has been widely used in clustering, our contribution is the unique way of
representing data topology to form geodesic relations and jointly harnessing various information types
including topology, distance and density. The proposed criteria are tested using both sampling (selective
sampling) and quantization (neural gas and k-meansþþ) approaches. Experiments on artificial datasets,
well-known small/medium-size real datasets, and four large datasets (four remote-sensing images), with
different types of clusters, show that the proposed geodesic based hybrid similarity criteria outperform
traditional similarity criteria in terms of clustering accuracies and several cluster validity indices.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Spectral methods, recently popular approach in clustering, have a
manifold learning algorithm based on eigenvalue decomposition of
pairwise similarities of the data points [1–5]. Due to its ability
to extract irregularly shaped clusters, its independence from para-
metric cluster models, and its easy implementation, spectral cluster-
ing has been empirically and theoretically supported [6,7] and thus it
has been successfully used in various areas such as information
retrieval, computer vision, and image processing [8–10]. However, its
effective submanifold (cluster) extraction based on eigendecomposi-
tion has a drawback of high computational cost (OðN3Þ, N : number of
data points) due to the very same reason. This makes direct use of
spectral clustering infeasible for clustering large datasets.

One approach for clustering of large datasets with spectral
methods is the use of parallel clustering distributed over many
computers [11], to address the memory and computation pro-
blem in expense of extra resources. Another approach, which is

called approximate spectral clustering (ASC), is to apply spectral
clustering on the reduced set of data representatives either
selected by a sampling approach or data quantization [12–18].
The ASC methods mainly focus on finding a suitable sampling or
quantization method to find the data representatives, with a
similarity criterion defined by (Euclidean) distance based Gaus-
sian function. Fowlkes et al. [12] use random sampling based on
Nystrom method whereas Wang et al. [15] show that selective
sampling is the best sampling method and it has a similar
success with k-means quantization. Yan et al. [16] use k-means
and random projection trees as quantization methods to con-
clude experimentally that the best sampling can be achieved by
vector quantization with minimum distortion. In addition, there
is theoretical justification for using quantization with minimum
distortion to determine the data representatives for approximate
spectral clustering [19]. Taşdemir [18] compares neural networks
(self-organizing maps [20] and neural gas [21]) with k-means
and achieves superior ASC accuracies with neural gas quantiza-
tion. Alternatively, k-meansþþ [22], a successful variant of k-
means with a novel probabilistic approach for initialization, can
be a good alternative for quantization in ASC.
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Besides making spectral methods feasible for large datasets, the
ASC approach enables accurate similarity definitions harnessing
different information types on the level of data representatives.
For example, the reduced set of representatives efficiently parti-
tions the data space into Voronoi polygons (where each repre-
sentative is the center), and the data points are distributed to
these representatives. This not only provides a data density
distribution which may determine separation among submani-
folds, but also helps identify topological relations of these repre-
sentatives with respect to the data manifold. Taşdemir [18]
exploits these information to some extent by using CONN similar-
ity defined in [23] (CONN is a weighted adjacency matrix where
weights show local data distribution with respect to the data
topology) to achieve high clustering accuracies than traditional
distance based similarity definition. Moreover, accurate definition
of topological relations enables the use of geodesic distances for
ASC. Despite being an extensively used approach, geodesic dis-
tances are ignored in ASC, mainly due to the difficulty in deter-
mining the topological relations required for their truthful
calculation with respect to the data manifold. In this study, for
ASC, we propose geodesic based hybrid similarities using topolo-
gical information provided by CONN, traditional (Euclidean) dis-
tance and local density information. By utilizing all available
information types, the proposed similarity criteria outperform
non-geodesic based similarities on a wide selection of datasets.

The paper is outlined as follows. First, we briefly explain
approximate spectral clustering in Section 2. Then, we propose
our geodesic based similarity definitions in Section 3. We show the
outperformance of our geodesic approach in Section 4, using
datasets with various characteristics (artificial data with basic
clustering challenges, datasets from UCI Machine Learning Repo-
sitory [24], and real world applications). We conclude and provide
open problems in Section 5.

2. Approximate spectral clustering (ASC)

Approximate spectral clustering (ASC) has two steps: (i) selection
of data representatives by quantization or sampling; (ii) spectral
clustering of the selected data representatives. In the first step, three
different approaches (selective sampling, neural gas, and k-mean-
sþþ) will be used. The second step of ASC is the same with the
traditional spectral clustering approaches except that the use of
representatives in ASC provides new information types (such as data
topology and local density) for similarity definition. We briefly
explain the ASC algorithm summarized in Fig. 1, the sampling/
quantization methods used in this study, and existing similarity
definitions for ASC below.

2.1. The ASC algorithm

Being associated with relaxed optimization of graph-cut
problems, spectral clustering methods use eigendecomposition
of a graph Laplacian matrix, L, constructed with respect to some
optimization criteria [1–3]. It has been indicated in [4,6] that
there is no clear advantage among different spectral methods as
long as a normalized graph Laplacian is considered [4,6]. There-
fore we utilize the method in [2] for approximate spectral
clustering (ASC). For a weighted undirected graph G¼ ðV ; SÞ
where the nodes V represent the elements (data points or
representatives) to be clustered and the edges S are the pairwise
similarities between these elements, Ng et al. [2] define a
normalized Laplacian matrix:

Lnorm ¼D�1=2SD�1=2; ð1Þ

based on the similarity matrix S and its diagonal degree matrix D
with di ¼∑j sði; jÞ is the total similarities of the node i. The matrix
S can be constructed in various ways [4], whereas it is often based
on a Gaussian function of the distances as explained in Section
2.3. By using the spectral clustering algorithm in [2] (steps 2–6
below), an ASC algorithm (Fig. 1) to find k clusters can be
summarized as follows:

(1) For a dataset with N samples, find n data representatives either
by vector quantization or sampling.

(2) Construct a similarity matrix S showing the pairwise simila-
rities of these n data representatives, based on a user-set
similarity criterion.

(3) Calculate the degree matrix D and Lnorm using the similarity
matrix S.

(4) Find the k eigenvectors fe1; e2;…; ekg of Lnorm, associated with
the k greatest eigenvalues fλ1; λ2;…; λkg.

(5) Construct the n� k matrix E¼ ½e1e2…ek� and obtain n� k
matrix U by normalizing the rows of E to have norm 1,
i.e. uij ¼ eij=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
∑k e2ik

q
.

(6) Cluster the n rows of U with the k-means algorithm into k
clusters.

(7) Assign the labels of the n representatives to their correspond-
ing data points.

Note that in this ASC algorithm, steps 2–6 are the spectral
clustering algorithm defined in [2] with a difference of using data
points directly instead of data representatives in step 2.

2.2. Sampling and quantization methods for ASC

Due to the fact that clustering of large datasets necessitates
much computational cost and memory requirement, two-step
algorithms, which first reduce the number of data points by
producing representatives (prototypes) obtained either by sam-
pling or by quantization, and then cluster the representatives,
have been common [21,25–27]. This is particularly important for
spectral clustering of large datasets, which requires an eigende-
composition of a similarity matrix (infeasible for such data in
terms of computation and memory). Therefore the two-step
spectral clustering, namely approximate spectral clustering
(ASC) has been used based on various sampling methods and
quantization approaches [15–19,12,8]. Selective sampling (SS) is
shown to be the optimum sampling method [15–17], whereas
quantization is often preferred due to high accuracies and
theoretical justification [17,18]. Therefore in this study, we
primarily employ neural gas quantization (which was shown
outperforming in [18]) and compare it with k-meansþþ and
selective sampling. k-meansþþ [22] is a variant of k-means
which achieves high accuracies based on effective initialization.
We briefly explain these three methods below.

2.2.1. Neural gas
The neural gas [28] is a neural learning algorithm which

produces topology preserving quantization of the data points.
The neural units, which will be the quantization prototypes of
the dataset, are randomly initialized. Then for a data point v

randomly selected from the dataset M, the best-matching unit
(BMU), wi, is found by the minimum Euclidean distance:

Jv�wi Jr Jv�wj J ð2Þ
The BMU wi and its neighbor prototypes wj determined by
neighborhood function hτðwjÞ are adapted by an iterative learning
process:

wjðtþ1Þ ¼wjðtÞþαðtÞhτðwjÞðv�wjðtÞÞ ð3Þ
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