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a b s t r a c t

Subspace estimation is of paramount importance in dealing with high-dimensional data with noise. In
this paper we consider a semi-supervised learning setup where certain supervised information (e.g.,
class labels) is available for only a part of data samples. First we formulate a unifying optimization
problem that subsumes the well-known principal component analysis in unsupervised scenarios as a
special case, while exploiting labeled data effectively. To circumvent difficult matrix rank constraints in
the original problem, we propose a nuclear norm based relaxation that ends up with convex
optimization. We then provide an infinite-dimensional greedy search algorithm that solves the
optimization problem efficiently. An extension to nonlinear dimensionality reduction is also introduced,
which is as efficient as the linear model via dual representation with kernel trick. The effectiveness of the
proposed approach is demonstrated experimentally on several semi-supervised learning problems.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In dealing with high-dimensional data, it is a central problem
to estimate a low-dimensional subspace that represents the unde-
rlying data distribution compactly and faithfully. Also known as
dimensionality reduction, it allows computationally tractable solu-
tions, avoids the curse of dimensionality [1], and has a filtering
effect for potentially noisy data. The efficacy of subspace learning
has been verified in several applications in diverse fields including
pattern recognition [2–5].

Previous approaches have attempted to discover a low-dim
structure of data either by extracting global statistical information
such as principal components (i.e., directions of the largest
possible variance) of PCA [6], or by exploiting a geometric nature
of data such as geodesic distances of ISOMAP [3]. Besides these
unsupervised scenarios, often the data samples are annotated with
additional label information that affects the formation of the low-
dim subspace. In typical supervised setups, we have additional
label information (e.g., class labels) that indicates grouping/
separation of data points in the intrinsic subspace. The idea has
been formulated in different ways as the linear discriminant
analysis (LDA) [1] and related models [7–9].

However, relatively few research has been conducted to deal
with dimension reduction with partially labeled data. The semi-
supervised setups are more common in practice, and naturally
unifies two extreme scenarios mentioned above. In this paper we
propose a novel semi-supervised subspace learning algorithm. We
first formulate an optimization problem that finds a subspace with

minimal data reconstruction error (i.e., faithfully preserving the
variation in data), and at the same time, exploits the class super-
vision for correct formation of the labeled data points in the
embedded subspace. Our subspace optimization problem sub-
sumes the unsupervised PCA as a special case, while extending
the graph Laplacian based regularization [10] to supervised data.

To circumvent difficult matrix rank constraints in the optimiza-
tion problem, we introduce a nuclear norm based relaxation that
yields convex optimization. However, solving the relaxed problem
is still challenging due to the non-differentiable objective originat-
ing from the nuclear norm. We provide an efficient infinite-
dimensional greedy search algorithm: an over-complete basis set
of symmetric dyads is considered to represent a family of subspace
mappings, where at each stage a new basis is selected in a greedy
fashion. The effectiveness of the proposed approach is demon-
strated empirically in several semi-supervised subspace learning
scenarios.

We contrast our approach with some of the existing semi-
supervised embedding or classification approaches recently intro-
duced and closely related to ours. In [11], fairly reasonable
extensions of the existing (unsupervised) nonlinear dimension
reduction algorithms like LLE and ISOMAP have been introduced.
Unlike ours and other commonly assumed setups, however, they
rather focus on the semi-supervised setups where the low-dim
coordinates are known for some of the data points.

In [12], the affinity/dissimilarity of low-dim embeddings in
accordance with available label information has been exploited
within the graph Laplacian framework similar in spirit to our
objective (especially, the cost term related to labels). But they only
consider the binary affinity relationship (either must-link or
cannot-link), which may not be appropriate for the problems with
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non-binary labels or real-valued affinity measures. On the other
hand, our framework admits arbitrary label structures through
similarity scores properly chosen.

Some other recent approaches [13,14] aim to extend the discr-
iminative dimension reduction algorithms like LDA to unlabeled
data points. In particular, the regularized semi-supervised learning
framework has been employed in [14], where the graph-based
manifold structure is considered to impose a penalty term for
unlabeled data points. Although these approaches achieve accu-
rate label prediction in many situations, one potential drawback is
that they do not explicitly consider the goodness of data recon-
struction (e.g., the objective of PCA). On the contrary, our approach
takes into account not only the overall variation of the original
data, but also consistency with available labels, enjoying the
merits from both generative and discriminative learning.

Another interesting line of research is devoted for regarding the
unlabeled data as a regularizer for learning the classification function.
The main idea is to exploit the unlabeled data to enforce the classifier
output to be consistent with the original data space. Specifically, the
LapSVM [15] utilizes the SVM-like hinge loss for the labeled data,
while the unlabeled data are exploited as a regularizer for the class
prediction function via the graph Laplacian based constraint to
preserve similarity in the original data. Later in [16], the functional
structure of the predictor is further extended to a deep (multi-layer)
neural network architecture (rather than a shallow linear functional
in the LapSVM), which is often believed to uncover the useful but
unknown feature structures in the raw data.

Compared to our approach, however, their objectives take less
tractable forms of non-differentiable hinge functions. Moreover,
the optimizations involve quite complicated steps of general (sub)
gradient descent where the classifiers are highly coupled with the
data samples in complex ways. As demonstrated in the experi-
ments, our approach is computationally far more efficient than
these approaches. They often suffer from the overhead in comput-
ing the gradients that go through the entire training samples
especially when the function architecture becomes more complex
and deeper.

1.1. Problem setups and notations

A data (feature) point is denoted by xARp. One may have label
yAY for each data point, where y can be, but not restricted to, a
class label Y ¼ f1;…;Kg. We are given the labeled data
L¼ fðx1; y1Þ;…; ðxl; ylÞg and the unlabeled data U ¼ fxlþ1;…; xng,
which are i.i.d. samples1 from an unknown distribution Pðx; yÞ. The
norm J � J (without subscript) indicates the L2 norm or Euclidean
norm. ‖ � ‖F is the Frobenius norm. The task of subspace learning is
to find a subspace projection matrix B¼ ½b1;…;bq� for bjARp,
j¼ 1;…; q, such that z¼ B>x ðARqÞ is a faithful low-dim repre-
sentation for x. The subspace dimension q ð5pÞ is assumed to be
estimated or known a priori. The label y (available only for L)
typically guides grouping/separation of the data points in the
subspace, specifically, for ðx; yÞ and ðx0; y0Þ it is preferred to have
z¼ B>x and z0 ¼ B>x0 lie close to (far apart from) each other when
certain similarity score measure wðy; y0Þ on Y � Y is large (resp.,
small).

2. Greedy semi-supervised subspace learning

We begin with formulating an optimization problem over the
subspace projection matrix B. First, the subspace needs to preserve
the salient information in the original data as much as possible.

This can be achieved by forcing the reconstruction of the data
point x, that is, BB>x, to be close to x. This is done for all available
data (i.e., L [ U), hence minimizing the reconstruction error,
∑n

i ¼ 1‖xi�BB>xi‖2.
To reflect affinity/separation supervision in the labeled data, we

penalize any inconsistency between the labels and the distances of
data points within the subspace. We let wij be the similarity score
between yi and yj ði; j¼ 1;…; lÞ. For discrete class labels, a usual
choice is wij ¼ 1 ð�1Þ if yi¼yj ðyiayjÞ, while for real-valued
(vector) y, one typically defines wij ¼ expð�κ‖yi�yj‖2Þ for some
κ40. Then the label regularization for two labeled points xi; xj

ðALÞ can be expressed as wij‖B>xi�B>xj‖2, which enforces equi-
labeled points to lie in the vicinity, and vice versa.

The two objectives are combined as (using constant γZ0Þ:

min
B

∑
n

i ¼ 1
‖xi�BB>xi‖2þγ ∑

l

i;j ¼ 1
wij‖B>xi�B>xj‖2: ð1Þ

The second term can be seen as an extension of the Laplacian
eigenmap [10] to the label-driven affinity graph. Also, the first
term is the well-known objective of the unsupervised PCA2 whose
solution coincides with the leading q eigenvectors of the sample
covariance matrix, ð1=nÞ∑ixix>

i [6]. Hence having γ¼0 essentially
reduces to the PCA.

Note that ‖B>xi�B>xj‖2 ¼ ðxi�xjÞ>BB> ðxi�xjÞ. We introduce
a new matrix variable A¼ BB> imposing A to be symmetric
positive semi-definite with rank q. Then (1) can be equivalently
re-written as (letting dij9xi�xjÞ:

min
A

∑
n

i ¼ 1
‖xi�Axi‖2þγ ∑

l

i;j ¼ 1
wijd

>
ij Adij

s:t: A≽0; rank ðAÞ ¼ q: ð2Þ
So we do optimization over A, and later B can be obtained by
factorizing A (e.g., spectral decomposition3).

Although the objective becomes convex quadratic in A, the rank
constraint makes the optimization non-convex, which is difficult
to solve in general. We consider a slight relaxation of (2) by
introducing the so-called nuclear norm, ‖A‖n9∑kσkðAÞ, where
σkðAÞð40Þ are the singular values of A. As the number of the
singular values equals the rank of A, minimizing the nuclear norm
has an effect of imposing the low-rank constraint. By denoting
X¼ ½x1;…; xn� and D¼∑i;jwijdijd

>
ij , the relaxed optimization is

written as

min
A≽0

‖X�AX‖2F þγ TrðDAÞþη‖A‖n; ð3Þ

where Trð�Þ is the trace. Note that estimating the subspace dimension
q is translated into choosing the constant ηZ0 properly.

Now, (3) is an instance of convex optimization, however, it is still
challenging to solve due to non-differentiability of the nuclear
norm. We address this issue by representing A as a conic combina-
tion of symmetric dyadic products, namely, A¼∑kθkuku>

k for
θk40 and Juk J ¼ 1. This looks similar to spectral decomposition,
however, we do not explicitly enforce orthogonality of fukg. Then it
follows that

‖A‖n ¼ ∑
k
θkuku>

k nr∑
k
θk‖uku>

k ‖n ¼∑
k
θk;

�����
����� ð4Þ

where we use the triangle inequality of the norm function and
‖uku>

k ‖n ¼ 1. We replace ‖A‖n by the upper bound ∑kθk.
For our representation of A as fðθk;ukÞg, we do optimization via

infinite-dimensional greedy search motivated by [17]. The idea is,

1 The samples in U are hence generated from the marginal PðxÞ.

2 To be precise, orthonormal constraints ðB>B¼ IÞ need to be imposed.
3 Hence, the subspace basis vectors bj can be orthogonal, but not necessarily

unit-norm. This can be considered as stretching out or shrinking some basis
directions, which does not change the subspace itself.
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