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a b s t r a c t

Finite mixtures are often used to perform model based clustering of multivariate data sets. In real life
applications, such data may exhibit complex nonlinear form of dependence among the variables. Also,
the individual variables (margins) may follow different families of distributions. Most of the existing
mixture models are unable to accommodate these two aspects of the data. This paper presents a finite
mixture model that involves a pair-copula based construction of a multivariate distribution. Such a
model de-couples the margins and the dependence structures. Hence, the margins can be modeled using
different families. Again, many possible dependence structures can also be studied using different
copulas. The resulting mixture model (called DVMM) is then capable of capturing a broad family of
distributions including non-Gaussian models. Here we study DVMM in the context of clustering of
multivariate data. We design an expectation maximization procedure for estimating the mixture
parameters. We perform extensive experiments on the basis of a number of well-known data sets.
A detailed evaluation of the clustering quality obtained by DVMM in comparison to other mixture models
is presented. The experimental results show that the performance of DVMM is quite satisfactory.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Finite mixtures [1] are widely used as a tool for modeling the
distribution of univariate and multivariate data. The wide spec-
trum of application areas of finite mixtures includes pattern
recognition, computer vision, signal and image analysis, and
machine learning. In fact, finite mixture models are useful in any
area which involves statistical modeling of data. In pattern
recognition community, mixture models are a popular choice for
clustering and classification. In the case of clustering, each com-
ponent of a mixture distribution represents one cluster in the data
cloud. Estimating the parameters of each such component and
identifying the component that generates an observation, even-
tually leads to clustering of data. For parameter estimation, a
common practice is to use the expectation maximization (EM)
algorithm proposed by Dempster et al. [2] and studied extensively
by Figueiredo and Jain [1].

Given a data set, selecting a proper mixture model that best
approximates the distribution of the data, is still an open problem.
Perhaps the most popular approach to mixture modeling is
the Gaussian mixture model (GMM) [1,3,4]. This model uses a
Gaussian (univariate or multivariate) distribution to describe each
mixture component. However, when the data are non-Gaussian in

nature (i.e., follow a non-Gaussian distribution), the GMM may
produce a poor modeling. In this context, some non-Gaussian
mixture densities also have drawn attention of the researchers.
Recent examples in this regard are the Dirichlet mixture model [5]
and the mixture of student's t distributions [6].

The existing mixture distributions are homogenous in the
sense that all the mixture components are assumed to have the
same family of distribution, and also, all the margins are from the
same family of univariate distributions. For example, each compo-
nent follows a Gaussian distribution in case of GMM. Then each
margin follows a univariate Gaussian distribution. In real life
applications, however, all the margins of a mixture component
may not follow a single form of distribution. Such a situation often
arises in the case of financial data [7]. An appropriate model for
such data cannot be obtained using homogenous mixture distri-
butions. This particular limitation of mixture models was pointed
out by Fujimaki et al. [8]. To address this issue, they designed
heterogenous mixture models by de-coupling the margins from
the joint distribution. This was done by using the “copula” theory
of statistics [9]. A copula is a bivariate distribution that joins
(couples) two margins. We will discuss copulas in Section 2.

The model proposed by Fujimaki et al. [8] is able to select the
marginal distributions and a multivariate copula that couples the
margins. In this model, the individual mixture components may
have different types of margins and multivariate copulas. This
heterogeneity offers more flexibility and the resultant model may
better approximate the data compared to the homogenous mod-
els. However, there are two disadvantages in using a multivariate
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copula. First, the extension of a bivariate copula to higher dimen-
sions is not straightforward. Apart from the multivariate Gaussian
and t copulas, the set of higher-dimensional copulas available in
the literature is rather limited. Second, even when we are able to
find a suitable multivariate copula, the parametric copula families
usually restrict all pairs of random variables to possess the same
type or strength of dependence. For example, the multivariate
Clayton copula [9] has only a single parameter to control the tail
association. For real life data, the dependence structure among
pairs of variables may vary substantially, ranging from indepen-
dence to complex non-linear dependence. No existing family of
multivariate copulas can handle such a wide range of dependence
for each pair of variables. Hence, the mixture models with multi-
variate copulas cannot provide sufficient flexibility to model the
dependence structure for each pair of variables. The motivation
behind the present study is to overcome this limitation.

Fortunately, we have an alternative copula based construction
of multivariate distributions. Statisticians often use the concept of
“pair-copula construction” (PCC) to build a multivariate distribu-
tion hierarchically based on simple building blocks called “pair-
copula”. In other words, the basic modeling scheme is to decom-
pose the multivariate distribution into a cascade of bivariate pair-
copulas applied on the random variables and their conditional or
unconditional distribution functions. The individual pair-copulas
may belong to any parametric or nonparametric family. Therefore,
all types and strengths of dependence may be accommodated in
the model. Originally proposed by Joe [10], pair-copulas have been
further explored and discussed by Bedford and Cooke [11,12]. In an
inferential context, a pioneering work was by Aas et al. [13].
However, we did not find any significant use of PCC in the pattern
recognition context. This article aims to bridge this gap by
introducing PCC based mixture distributions (termed as DVMM
and SDVMM) for model based clustering. Our aim is to combine
different types of margins and corresponding pair-copulas inside a
multivariate distribution. In this context, we provide here an iterative
selection of margins and associated bivariate pair-copulas, for a
mixture component. Thus, a higher degree of heterogeneity (com-
pared to Fujimaki et al. [8]) is achieved for each mixture component.
The standard expectation maximization (EM) procedure is used to
estimate the model parameters. We conduct comprehensive experi-
ments to assess the proposed model in the context of clustering. We
observe an improved performance after comparing our model with
some existing well-known mixture models.

The paper is organized as follows. Section 2 introduces the
concept of copula as well as pair-copula construction. This section
is introductory and presents standard materials. Section 3 defines
the D-vine mixture model (DVMM) and describes the design of EM
estimation of DVMM. SDVMM, a variant of DVMM, is also pre-
sented in this section. The experiments are described and the
results are presented in Section 4. We perform experiments on
synthetic data as well as on several real life data sets. Finally, in
Section 5 we summarize the findings and discuss several issues for
future research.

2. Pair-copula construction for multivariate distribution

Let us introduce the concept of copula through the following
theorem due to Sklar [9].

Theorem 1 (Sklar). Let F be a joint distribution function with
marginal distributions F1 and F2. Then there exists a copula C such
that for all x; yA ½�1;1�,

Fðx; yÞ ¼ CðF1ðxÞ; F2ðyÞÞ: ð1Þ

Here Cðu; vÞ is a mapping ½0;1� � ½0;1�-½0;1�, termed as copula
in the sense that it couples the random variables X and Y. The
advantage of copula is that knowing only the margins, one can
construct joint distributions having complex forms of dependence
structure, using different types of copulas. This property of copulas
makes them widely popular in financial mathematics [14] where
often the joint distribution of two or more variables does not take
any well-known parametric form. Other fields of application
involve actuarial science [15] and hydrology [16]. For a theoretical
study on copulas, Nelsen [9] provides a good introduction. Accord-
ing to Nelsen [9], there are a large number of available copula
families. The most popular are the elliptical and the Archimedean
families. In this study, we use “Clayton” and “Gumbel” copulas
from the Archimedean family. In addition, we use “Gaussian”
copula from the elliptical family. At the end of this section we
briefly discuss each of these copulas.

Let us now concentrate on the pair-copula construction (PCC)
of a multivariate distribution. We use “f” and “F” to denote
probability density function and cumulative distribution function
respectively. Similarly, “c” and “C” denote respectively the prob-
ability density function and cumulative distribution function
of a copula. Now, consider a d-dimensional random variable
X ¼ ðX1;…;XdÞ with joint density f ðx1;…; xdÞ. This density can be
factorized as follows:

f ðx1;…; xdÞ ¼ f ðxdÞ ∏
d�1

t ¼ 1
f ðxt jxtþ1;…; xdÞ: ð2Þ

The conditional distribution involved in Eq. (2) can be written as
functions of the corresponding copula densities. Let u1 and u2 be
standard uniform. Then we have the following “h-function”:

hðu1;u2;ΘÞ ¼ Fðu1ju2Þ ¼
δCðu1;u2;ΘÞ

δu2
; ð3Þ

where Θ is the set of parameters for the copula C of the joint
distribution function of u1 and u2. Now, consider the variable xi
and a set of variables v that does not include xi. Suppose vj is the
jth element of v. Let v� j denote the set v that does not include vj. It
follows from Czado [17] that for any vjAv,

FðxijvÞ ¼ hðFðxijv� jÞ; Fðvjjv� jÞ;Θi;jjv� j
Þ: ð4Þ

Here Θi;jjv� j
represents the parameters of the corresponding

copula density ci;jjv� j
ðFðxijv� jÞ; Fðvjjv� jÞÞ. This shows that the con-

ditional distributions with the conditioning set v can be con-
structed recursively using the h-functions from the conditional
distributions with a lower dimensional conditioning set. For the
conditional density f ðxjvÞ, it easily follows that

f ðxijvÞ ¼ ci;jjv � j
ðFðxijv� jÞ; Fðvjjv� jÞÞf ðxijv� jÞ: ð5Þ

It is to be noted that actually, the conditional copula ci;jjv � j
ð:; :Þ

depends on the conditioning set v� j. In pair-copula model,
ci;jjv� j

ð:; :Þ is simplified by dropping the dependence on v� j. Hobæk
Haff et al. [18] observed that this simplification provides a good
approximation to the multivariate distribution. Using Eq. (5), we
could express the joint density f ðx1;…; xdÞ in terms of bivariate
copulas. Such copulas are popularly known as pair-copulas and the
method as pair-copula construction.

As an example, consider d¼3 where X ¼ ðX1;X2;X3Þ. Then
Eq. (2) becomes

f ðx1; x2; x3Þ ¼ f ðx3Þf ðx1jx2; x3Þf ðx2jx3Þ: ð6Þ
Following the previous construction, the full PCC expansion for
Eq. (6) becomes

f ðx1; x2; x3Þ ¼ f ðx1Þf ðx2Þf ðx3Þ
�c1;2ðFðx1Þ; Fðx2ÞÞc2;3ðFðx2Þ; Fðx3ÞÞ
�c1;3j2ðFðx1jx2Þ; Fðx3jx2ÞÞ: ð7Þ
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