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a b s t r a c t

Linear Discriminant Analysis (LDA) is one of the most popular approaches for supervised feature extraction
and dimension reduction. However, the computation of LDA involves dense matrices eigendecomposition,
which is time-consuming for large-scale problems. In this paper, we present a novel algorithm called
Rayleigh–Ritz Discriminant Analysis (RRDA) for efficiently solving LDA. While much of the prior research
focus on transforming the generalized eigenvalue problem into a least squares formulation, our method is
instead based on the well-established Rayleigh–Ritz framework for general eigenvalue problems and seeks to
directly solve the generalized eigenvalue problem of LDA. By exploiting the structures in LDA problems, we
are able to design customized and highly efficient subspace expansion and extraction strategy for the
Rayleigh–Ritz procedure. To reduce the storage requirement and computational complexity of RRDA for high
dimensional, low sample size data, we also establish an equivalent reduced model of RRDA. Practical
implementations and the convergence result of our method are also discussed. Our experimental results on
several real world data sets indicate the performance of the proposed algorithm.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

With the advancements in data collection and storage technol-
ogies, there has been an exponential increase in the availability and
usage of large, high-dimensional datasets. These data can directly
be represented as vectors in high-dimensional vector spaces.
Obviously, operating directly on such high-dimensional vector
space is ineffective and may lead to high computational and storage
demands as well as poor performance. A typical way to circumvent
the “curse of dimensionality” problem [1] and other undesired
properties of high dimensional spaces is to use dimensionality
reduction techniques. The goal of dimensionality reduction is to
map a set of high-dimensional samples into a lower dimensional
space while preserving the intrinsic structure in the data.

Up to now, researchers have developed a variety of dimension-
ality reduction methods. Based on how to utilize the label informa-
tion, these algorithms can be broadly divided into three classes, i.e.,
unsupervised, supervised and semi-supervised. The first class is
supervised which typically includes linear discriminant analysis
(LDA) [2,3], maximization of the geometric mean of all divergences
(MGMD) [4], max–min distance analysis(MMDA) [5], etc. The second
class is unsupervised which include principal component analysis

(PCA) [6] and locality preserving projections (LPP) [7,8], etc. The third
class is semi-supervised [9,10] which can use unlabeled data for
promoting supervised methods. Beyond the commonness in math-
ematical formulation [11] shared by these algorithms, Zhang et al.
proved that most popular dimensionality reduction algorithms,
unsupervised or supervised, can be explained as instances of a
ubiquitously two-stage framework named “patch alignment” [12].

One of the most popular supervised dimensionality reduction
algorithms is linear discriminant analysis (LDA). It has been widely
used in many applications such as microarray data classification;
face recognition and gait recognition, etc [2,13–15].

Computationally, LDA amounts to solving a generalized sym-
metric semi-definite eigenvalue decomposition (GEVD) problem.
A straightforward implementation can thus be very time-
consuming for large datasets [16]. So far a number of methods
[3,16–22] have been explored to solve LDA with improved scal-
ability. The key idea of these approaches is to transform the
generalized eigenvalue problem into a least squares formulation,
which can be solved efficiently using existing algorithms such as
LSQR [21,23]. Two representative algorithms are least squares
linear discriminant analysis (LS-LDA) [18,19] and spectral regres-
sion discriminant analysis (SRDA) [16]. Recently, Sun introduced
2SrLDA [21], a generalization of LS-LDA which relaxes the equiva-
lence conditions and incorporates a regularization term.

Alternatively, one can use general-purpose GEVD algorithms to
solve LDA. It is known that for solving small to medium size GEVD
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problems, ‘Rayleigh–Ritz’ methods like Lanczos method and JDQZ
are often the ideal choice [2,13–15]. In [21], Sun attempted to solve
LDA based on Lanczos method. However, the experiments com-
parisons show that it is much slower than regression-based
methods. This is not surprising because a standard GEVD solver
would encounter severe computational bottleneck or even become
impractical for large problems. For example, Rayleigh–Ritz type
GEVD algorithms generally cannot guarantee finding the largest
eigenpairs (which is required by LDA) via short-term recurrences,
therefore more sophisticated strategy like trust-reign method has
to be employed [24], which can make the computation inefficient.
In addition, for symmetric eigenvalue problems, Rayleigh–Ritz
methods like Lanczos algorithm can guarantee that the approx-
imate solution at each iteration be computed efficiently using
divide-and-conquer method [25]. However this advantage also
doesn’t exist for general GEVD methods.

In this paper, we propose a novel Rayleigh–Ritz algorithm for
LDA called Rayleigh–Ritz discriminant analysis (RRDA). Like JDQZ
and Lanczos method, we adopt the ‘Rayleigh–Ritz’ procedure as a
general framework. However, the subspace expansion and extrac-
tion strategy is specially designed to gradually optimize the ratio
trace objective function of LDA. By exploiting the special structure
of LDA problem, the above-mentioned issues of general purpose
GEVD methods can also be solved. We demonstrate both theore-
tically and via numerical examples that this hybrid algorithm
efficiently produces a solution of high precision.

Additionally, in many applications, data are highly dimensional,
while the number of available training samples is usually much
smaller. Such is the case for the image databases of facial recognition,
gene expression data, as well as the text documents [26,27]. To reduce
the storage requirement and computational complexity of the iteration
for these high dimensional, low sample size data, we also establish an
equivalent reduced model of RRDAwhich is of order n instead of order
d, where d is the number of features and n is the number of samples.
Practical implementations and the convergence result of RRDA are also
discussed. Experiments show that RRDA is more efficient than 2SrLDA
and SRDA, which are the state-of-the-art methods for solving LDA.

The rest of this paper is organized as follows. Section 2 outlines
LDA and the Rayleigh–Ritz procedure. The proposed method is
discussed in Section 3. Experimental results on several real world
data sets are reported in Section 4. Finally, some concluding
remarks are drawn in Section 5.

2. Background

In preparation for our description of the proposed method, we
introduce some notations. Throughout this paper all matrices are
boldface uppercase, and vectors are boldface lowercase. n is the
number of samples, d is the data dimensionality, and c is the number
of classes (or labels). The ith sample is denoted as xiAℝd�1, and
X ¼ ½x1; x2;⋯; xn�Aℝd�n represents the data matrix. Without loss
of generality, we assume that X is partitioned into c classes as
X¼[X1, X2,⋯, Xc], where X iAℝd�ni corresponds to the data points
from the ith class. Iq is the q-by-q identity matrix and eq is a vector of
all ones with length q. The centering matrix is defined as
Cq ¼ Iq� eqeTq . For a matrix A, we let Aþ be the Moore–Penrose
inverse of A, trace(A) be the trace of A, rank(A) be the rank of A and
span(A) be the range space of A.

2.1. Linear discriminant analysis

The solution of LDA optimizes the ratio trace problem
[21,28,29]:

arg max
WT StW ¼ I

trace½ðWTStWÞ�1WTSbW � ð1Þ

where the total covariance matrix St and the between-class
covariance matrix Sb are defined as

St ¼
1
n
∑n

i ¼ 1ðxi�μÞðxi�μÞT

Sb ¼
1
n
∑c

k ¼ 1nkðμk�μÞðμk�μÞT ð2Þ

where μi ¼ ð1=niÞX ieni denotes the centroid of the class i and
μ¼(1/n)Xen denotes the global centroid.

The optimization problem (1) is solved by computing all the
generalized eigenpairs [16]:

λiStwi ¼ Sbwi; wia0; λi40 ð3Þ
and thus, the optimal W consists of eigenvectors of S�1

t Sb
corresponding to all positive eigenvalues, provided that St is
nonsingular.

In practical application, to deal with the singularity of St, many
generalizations of LDA have been proposed [15,17,27,28,30–39].
One widely used approach is called Regularized Discriminant
Analysis (RDA) [33], which penalizes the total scatter matrix St
with a regularizer αId, α40, and the solution is given by solving
the GEVD problem

λiðStþαIdÞwi ¼ Sbwi;wia0; λi40 ð4Þ

Since LDA is a special case of RDA with α¼0, we mainly discuss
RDA in the sequel.

2.2. Rayleigh–Ritz method for GEVD problems

The Rayleigh–Ritz procedure serves as the basic framework of
many algorithms for solving linear and nonlinear eigenvalue
problems. Notable examples include the Lanczos method [40],
JDQZ (including JD-related variants) [41–43] and GY [44].

In order to find the generalized eigenpairs of a given matrix
pair (S1, S2), the Rayleigh–Ritz procedure selects the approximate
eigenvector from a search subspace span(Vk) that is expanded
iteratively. Each iteration consists of two parts. In the first part, the
‘extraction’ part, the projected generalized eigenproblem

VT
kS1Vkη¼ λVT

kS2Vkη ð5Þ

is solved and a solution (λ,η) is selected. The Ritz value λ and Ritz
vector Vkη form an approximate generalized eigenvalue and
generalized eigenvector, respectively. In the second part, the
‘expansion’ part, the search space span(Vk) is enlarged by adding
a new basis matrix Pk to it. This process is summarized in
Algorithm 1. The idea is that, as the search subspace grows, the
eigenpair approximations will converge to an eigenpair
of the original problem. In order to keep computation costs low,
we usually do not expand the search space to the whole space.

Algorithm 1. The Rayleigh–Ritz framework for solving GEVD
Problems

1) Start: Matrix pair (S1, S2), choose an initial non-zero matrix V1.
2) Output: Wopt as the eigenvectors of (S1, S2) with positive

eigenvalues.
3) Iterate: Until convergence, for k¼1,2,… do:

3.1) Expansion: Choose a subspace basis Pk based on certain
criteria, expand Vk�1 with Pk to Vk such that Vk¼[Vk�1 Pk].

3.2) Extraction: Compute the positive eigenpairs (λi, ηi) of
ðVT

kS1Vk; V
T
kS2VkÞ and the Ritz vectors wi¼Vkηi, i¼1,2,⋯,

c, Let Wk¼[w1w2⋯];
3.3) Test for convergence. Stop if satisfied.

4) End: Output Wk as the approximation of Wopt.
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