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a b s t r a c t

Leaf Area Index (LAI) is a critical variable for forest management. It is difficult to obtain accurate LAI esti-
mations of high spatial resolution over large areas. Local estimations can be obtained from in situ field
measurements. Extrapolation of local measurements is prone to error. Remote sensing LAI estimation
products, such as the one provided by MODIS are of very low resolution and subject to criticism in recent
validation works. Forest management requires increasingly high resolution estimations of LAI. We pro-
pose a data fusion process for high spatial resolution estimation of the LAI over a large area, combining
several heterogeneous information sources: field sampled data, elevation data and remote sensing data.
The process makes use of spatial interpolation techniques. We follow a hybrid validation approach that
combines the conventional prediction error measures with a spatial validation based on image segmen-
tation. We obtain encouraging results of this information fusion process on data from a forest area in the
north of Portugal.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Forest management is guided by the accurate estimation of the
current biomass and the prediction of its evolution. There are sev-
eral dynamical models of the biomass, based on the modeling of
the interactions between the soil, the atmosphere and the vegeta-
tion [1,2]. The Leaf Area Index (LAI) is a critical input variable for
these models. The LAI is the ratio of total upper leaf surface of
vegetation divided by the surface area of the land on which the
vegetation grows. LAI is a dimensionless value, typically ranging
from 0 for bare mineral ground in deserts up to 6 for a dense forest.
The accurate LAI estimation over extended forested areas allows
the spatial estimation of the biomass evolution, and, therefore,
the careful management of the forest. It can be critical from several
economical points of view, including the negotiation of CO2 quotas
and the optimal balance between ecological preservation and
exploitation of the forest.

In situ field measurements are the most trustworthy sources of
information for LAI estimation. Unfortunately, they are very expen-
sive and local. Some remote sensing products, such as the ones
provided by Terra Moderate Resolution Imaging Spectroradiometer
(MODIS) [3,4], give very low spatial resolution estimations of the
LAI. The resolution of MODIS data is very coarse, thus the pixel size
is very large allowing for a great heterogeneity of vegetation cove

in each pixel. Besides there are growing concerns about its validity
over specific terrains [5]. Previous works [6] on the estimation of
the Net Primary Production (NPP) have shown the simplification
of reality incurred by MODIS and its bias underestimating extreme
values of NPP.

High spatial resolution remote sensing, i.e. Landsat, do not
provide LAI estimation, but it is possible to compute some vari-
ables correlated with LAI. In this paper we propose an innovative
information fusion process based on spatial interpolation methods
to provide high resolution accurate estimations of LAI. The infor-
mation sources are the in situ field measurements, the remote
sensing images and the altitude data obtained from digital eleva-
tion maps. The process fits a random field to the data provided
by the in situ measurements using the remote sensing and altitude
data to improve the spatial interpolation of the LAI values, specially
in regions outside the in situ sampled areas. We propose also a
hybrid validation approach combining conventional prediction
error measures and the spatial validation based on the mutual
information between the estimated LAI values and the results of
remote sensing image segmentation evaluated by the authors LN
and DL which are experts on the specific characteristics of this
study area where they have done field work for many years. The
experts were confronted with a Likert scale of LAI range values into
five categories (lowest, low, medium, high, highest) to assign them
to each image region obtained by the segmentation software, so
that they are not required to provide detailed quantifications.

Previous works on information fusion involving remote sensing
data were concerned with the registration of images from different
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sensors [7–9] or the combination of classifiers for improved
thematic map generation [10]. There are few instances [11] com-
bining remote imaging data and other kinds of information. Specif-
ically, in situ measurements have been used mostly for validation
of classification or regression results. Recent validation works [5]
show that the MODIS LAI product underestimated LAI in some
croplands. Therefore, there is a need for innovative accurate LAI
estimation procedures such as the one proposed in this paper.
The preliminary results provided in this paper encourage further
exhaustive computational experiments with greater data support
which would allow detailed statistical analysis and validation.

The contents of the paper is the following: Section 2 contains
some background information on LAI estimation. Section 3 gives
the formal definitions of the spatial information methods used to
perform information fusion. Section 4 describes the data used in
the experiment and some validation methodological issues. Sec-
tion 6 reports our experimental results. Finally, Section 7 gives
our conclusions and directions for future work.

2. Background on LAI estimation

Leaf Area Index (LAI) is a fundamental characteristic of terres-
trial ecosystems because it is directly connected with evapotrans-
piration, photosynthetic rate, forest production and site water
balance [12,13]. The LAI or the leaf area per unit ground area is
especially important in many global terrestrial processes for com-
puting the exchanges of energy, water and other gases [14]. LAI
constitutes a key variable for ecological studies because is strongly
related to physiological processes. Borak and Jasinski [15] consider
the LAI, an important quantity in many global climate and ecolog-
ical models.

Estimation of LAI from remote sensing data has been the subject
of active research. There are algorithms to solve the inverse prob-
lem of finding LAI from MODIS data [16–18] based on the bidirec-
tional reflection model and patterns of reflectance observed in the
nature which have become standard products. Using Synthetic
Aperture Radar (SAR) the regions with specific LAI values can be
segmented from the image [19]. For Landsat data, such as the
one used in our work, Bayesian networks have been trained to pre-
dict the LAI value [20]. Recent validations of the MODIS LAI product
using in situ measurements and Landsat derived vegetation indices
[5] demonstrated that MODIS LAI underestimates LAI on some
croplands. Therefore, innovative and more accurate LAI estimation
methods are needed.

Althought direct LAI estimates can not be obtained from Landat
image, it is possible to compute [21] physiologically-based vegeta-
tion indices strongly correlated with LAI, such as the Normalized
Difference Vegetation Index (NDVI) defined as follows:

NDVI ¼ NIR� R
NIRþ R

ð1Þ

where R and NIR stand for the spectral reflectance measurements
acquired in the red and near-infrared regions, respectively. Vegeta-
tion indices such as NDVI are correlated with reductions in photo-
synthetically active radiation (PAR). The dependence of NDVI on
LAI is based on the correspondence between the amount of leaves
and the absorption of PAR (APAR) in the satellite-observed spec-
trum of solar reflection [22]. The relationship between APAR and
NDVI is linear [23] and the relationship between the fraction of
APAR (fAPAR) and LAI is exponential:

fAPAR ¼ 1� expð�kLAIÞ; ð2Þ

where k is a coefficient related to the spatial distribution and struc-
ture of foliage and leaves. Fensholt [24] reported that numerous
studies have analysed this relation and there is general agreement

that a stronger relation exists between fAPAR and NDVI than
between LAI and NDVI. Based on satellite data, the relationship
between NDVI and fAPAR has been found to be linear or approxi-
mately linear for green vegetation. The equations relating LAI and
NDVI are very local and difficult to estimate. Their parameters de-
pend on vegetation types, seasonal and annual variations. We do
not attempt to fit them from the scarce available data. Instead, we
use the NVDI as ancilliary information that can be useful to perform
accurate extrapolations of in situ LAI measurements performed
through spatial interpolation methods.

3. Spatial interpolation models

Geostatistical methods use statistical properties of the given
observations of an spatial process (i.e. spatial autocorrelation).
The theory of regionalized variables [25] and geostatistical meth-
ods based on it are an effective tool for studying spatial distribu-
tions of spatial variables, and to perform interpolation of
unevenly distributed samples over a regular sampling grid. Geosta-
tistical studies have been used in many applications, such as
hydrological data modeling [26,27], mining [28,29], studies of air
quality [30,31], biology [32,33], and economics [34].

Kriging is a statistical interpolation method. Given a set of spa-
tial samples, it fits a random field to them to produce predictions of
the values of the latent spatial process in positions where no obser-
vation is given. Therefore, the goal of kriging is to estimate the
value of a random function, Z(s) in non-sampled positions s of a
region D, given a set of observation {Z(s1), . . . , Z(sn)} obtained in
positions, s1, . . . , sn. The kriging predictor, bZðs0Þ, is a linear combi-
nation of the observed values:

bZðs0Þ ¼
Xn

i¼1

ki � ZðsiÞ; ð3Þ

where the linear combination parameters ki are solutions of a sys-
tem of equations obtained assuming that the data come from a
sample surface of a random process ZðsÞ and that we want to min-
imize the error of prediction:

eðsÞ ¼ ZðsÞ �
Xn

i¼1

ki � ZðsiÞ: ð4Þ

Kriging computes the best linear unbiased estimator bZðs0Þ based on
a stochastic model of the data spatial dependence, which is quanti-
fied either by the variogram or by the mean and covariance function
of the random field. The Simple Kriging (SK) assumes that the pro-
cess mean and variance are constant and known, while the Ordinary
Kriging (OK) [35] assumes that the process mean and covariance are
unknown and must be estimated. The estimation of the kriging
parameters is given by the following equation:

k ¼ C�1cðsÞ; ð5Þ

where k = [k1, . . . , kn] corresponds to the vector of kriging parame-
ters, C = [c(si, sj); i, j = 1, . . . , n] is the variogram matrix, c(si, sj) is
the value of the variogram between two sampling points, and c(s)
denotes the vector of variogram values between the sampling
points and the point of actual estimation.

3.1. Universal krigging

The Universal Kriging (UK) assumes the existence of a trend in
the data, so that the local mean of the process depends on the
actual position E½ZðsÞ� ¼ mðsÞ. Therefore, the residual process
obtained after removing the trend
RðsÞ ¼ ZðsÞ �mðsÞ ð6Þ

is assumed to be a (zero mean) stationary process which can be
interpolated using simple kriging. If there is some deterministic
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