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a b s t r a c t

By ‘‘fusion’’ this work means integration of disparate types of data including (intervals of) real numbers as
well as possibility/probability distributions defined over the totally-ordered lattice (R,6) of real numbers.
Such data may stem from different sources including (multiple/multimodal) electronic sensors and/or
human judgement. The aforementioned types of data are presented here as different interpretations of
a single data representation, namely Intervals’ Number (IN). It is shown that the set F of INs is a par-
tially-ordered lattice (F,�) originating, hierarchically, from (R,6). Two sound, parametric inclusion mea-
sure functions r:FN � FN ? [0,1] result in the Cartesian product lattice (FN,�) towards decision-making
based on reasoning. In conclusion, the space (FN,�) emerges as a formal framework for the development
of hybrid intelligent fusion systems/schemes. A fuzzy lattice reasoning (FLR) ensemble scheme, namely
FLR pairwise ensemble, or FLRpe for short, is introduced here for sound decision-making based on descrip-
tive knowledge (rules). Advantages include the sensible employment of a sparse rule base, employment
of granular input data (to cope with imprecision/uncertainty/vagueness), and employment of all-order
data statistics. The advantages as well as the performance of our proposed techniques are demonstrated,
comparatively, by computer simulation experiments regarding an industrial dispensing application.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the domain of Soft Computing or, equivalently, Computational
Intelligence, the term ‘‘hybrid (system/algorithm)’’ frequently de-
notes an integration of different techniques/technologies including
artificial neural networks, fuzzy systems, evolutionary/swarm
computing, etc. towards improving an index of performance in
real-world applications [1,15]; the term ‘‘intelligence’’ is pertinent
to decision-making, e.g. in pattern classification/recognition [82];
moreover, the term ‘‘(intelligent) fusion’’ may signify an aggregate
intelligence towards improving decision-making [48]. In the afore-
mentioned sense, a ‘‘hybrid intelligent fusion system’’ may be a
Multiple Classifier System (MCS) [46,49] also known in the litera-
ture as Classifier Ensemble [16,59,65] or Committee [21,80] or Voting
Consensus [5,51]. Note that a number of MCS architectures/strate-
gies including applications have been reported [22,29,30,47,50,
52,55,56,70,71,74,81,85,86]. The MCS techniques are, typically, of
statistical nature [34] in the Euclidean space RN. Nevertheless, a
‘‘hybrid intelligent fusion system’’ may be defined otherwise, as ex-
plained in the following.

The term ‘‘fusion’’ may, alternatively, denote an integration of
data stemming from multiple, even heterogeneous, sources

including (multimodal) electronic devices as well as human judge-
ment [6,9,13,17,20,27,53,57,64,66,68]. In the latter context, there is
a keen interest in formal frameworks for unified decision-making
based on disparate types of data that may accommodate uncer-
tainty [9,18,79]. One such a framework has been proposed lately
[36], in an information engineering context, based on mathemati-
cal lattice theory as follows.

Different authors have recognized that several types of data of
practical interest, including information granules [62,84], are par-
tially(lattice)-ordered [38,72]. Hence, lattice theory emerged as a
formal framework for the fusion of disparate data types [36]. In
such context, fuzzy lattice reasoning (FLR) was originally proposed
[37,42,44] as a specific rule-based scheme for classification in a
complete lattice (L,�) data domain including, as a special case,
the lattice of hyperboxes in the Euclidean space RN. In this work,
FLR is defined, more widely, as any employment of an inclusion
measure function r:L � L ? [0,1] for decision-making. Therefore,
in the context of this work, the term ‘‘intelligent’’ is pertinent to
‘‘FLR (reasoning)’’.

Instead of a general mathematical lattice this work considers a
specific one originating hierarchically from the totally-ordered lat-
tice (R,6) of real numbers. Note that the latter (lattice) has
stemmed, historically, from the conventional measurement pro-
cess of successive comparisons [36,42]. Our interest in lattice
(R,6) was motivated by the existence of vast quantities of real
number measurements stored worldwide. Therefore, we sought
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convenient data/information representations based on R. Hence,
the complete lattice (F,�) of Intervals’ Numbers (INs) emerged,
as detailed below, where a IN is a unified data representation
including real numbers, intervals, and probability/possibility dis-
tributions [60]. In conclusion, the Cartesian product lattice (FN,�)
is introduced here as a formal framework for developing hybrid
intelligent fusion systems/schemes, where an element of lattice
(FN,�) is interpreted as either a rule (of a FLR scheme) or as an in-
put to a FLR scheme.

In previous work, a FLR scheme for classification has been
implemented on the r-FLNMAP neural network architecture
[36,43,45]. Note that the latter (neural network) architecture was
introduced as an enhancement of the fuzzy-ARTMAP, or FAM for
short, neural classifier [11]. More specifically, the r-FLNMAP has
extended the applicability domain of FAM from the lattice of
hyperboxes in RN to any complete lattice data domain. Moreover,
note that even in the Euclidean space RN, that is FAM’s sole ‘‘appli-
cability domain’’, classifier r-FLNMAP retains, comparatively, sig-
nificant advantages including the capacity to introduce tunable
nonlinearities as well as the capacity to deal with both non-over-
lapping hyperboxes and granular (hyperbox) input data [36,43].

Due to the fact that both classifiers r-FLNMAP and FAM are
unstable, in the sense that their testing accuracy depends on the or-
der of presenting the training data [19,43], both r-FLNMAP and
FAM make good candidates for Voting classification schemes
[10,36,69]. Indeed, empirical studies have clearly demonstrated
an improved testing accuracy as well as a more stable testing accu-
racy for both FAM [3,12,61] and r-FLNMAP [36,45] in RN. Later
work has extended the applicability of r-FLNMAP from the lattice
of hyperboxes to the lattice (F,�) of INs based on FLR [42]. In all,
FLR is a Lattice-Computing scheme as explained next.

Lattice-Computing (LC) is a term introduced by Graña [23] to
denote any computation in a mathematical lattice. Graña and col-
leagues have demonstrated a number of LC techniques in image
processing applications [24–26]; in particular, they have employed
mathematical morphology techniques in the totally-ordered lattice
of real numbers. It turns out that FLR is also a LC scheme, in partic-
ular for ‘‘reasoning’’ as explained below.

This paper is based on previously published work on FLR includ-
ing the following novelties. First, it presents a space of INs as a for-
mal information fusion framework including a large number of
references as well as pertinent discussions – a novel mathematical
proof is also introduced here. Second, it includes mathematical
notation improvements. Third, it introduces an enhanced defini-
tion of FLR. Fourth, it demonstrates ‘‘in principle’’ an accommoda-
tion of granular inputs. Fifth, it introduces a novel decision-making
scheme, that is a descriptive (rule-based) FLR ensemble of experts.
Sixth, it shows a number of illustrative, new examples including
figures. Seventh, it demonstrates preliminary (computer simula-
tion) results regarding an industrial application.

The layout of this work is as follows. Section 2 presents a formal
framework for fusion/integration of disparate data types. Section 3
describes our proposed FLR ensemble scheme. Section 4 outlines
an industrial application. Section 5 demonstrates, comparatively,
preliminary experimental results. Section 6 concludes by summa-
rizing our contribution. The Appendix presents novel mathemati-
cal notation as well as a novel mathematical proof.

2. A formal information fusion framework

This section introduces constructively, in four steps, a formal
information fusion framework, namely the Cartesian product lat-
tice (FN,�) of Intervals’ Numbers (INs). Different interpretations
of INs are also presented. Note that the four-level hierarchy of lat-
tices presented here is a novelty of this work. For the interested

reader, useful notions and tools regarding lattice theory are sum-
marized in the Appendix.

2.1. The complete lattice ðR; 6Þ

The set R of real numbers is a totally-ordered, non-complete lat-
tice denoted by (R,6). It turns out that (R,6) can be extended to a
complete lattice by including both symbols ‘‘�1’’ and ‘‘+1’’. In
conclusion, the complete lattice ðR;6Þ emerges, where
R ¼ R [ f�1;þ1g. Note that in previous work we, erroneously,
assumed that lattice (R,6) is complete [38,60]. Even though the
aforementioned error is not critical, this work considers, instead,
the complete lattice ðR;6Þ 1. We remark that complete lattices are
important not only in defining an inclusion measure function, as
shown in the Appendix, but they are also important in mathematical
morphology [58,67].

On the one hand, any strictly increasing function v : R! R is a
positive valuation in the complete lattice ðR;6Þ. Motivated by the
two constraints presented in the Appendix (subsection B), here
we consider positive valuation functions v : R! RP0 such that
both v(�1) ¼: limx?�1v(x) = 0 and v(+1) ¼: limx?+1v(x) = A < +1.
On the other hand, any bijective (i.e. one-to-one) strictly decreasing
function h : R! R is a dual isomorphic function in lattice ðR;6Þ.
We will refer to functions h(�) and v(�) as dual isomorphic and posi-
tive valuation, respectively. Useful extensions to the corresponding
lattice of intervals are presented next.

2.2. The complete lattice (D,�) induced from ðR;6Þ

A generalized interval is defined in lattice ðR;6Þ as follows.

Definition 1. Generalized interval is an element of the product
lattice ðR;6@Þ � ðR;6Þ.

Recall that 6@ in Definition 1 denotes the dual (i.e. converse) of
order relation 6 in lattice ðR;6Þ, i.e. 6@ �P. The product lattice
ðR;6@Þ � ðR;6Þ � ðR� R;P � 6Þwill be denoted, simply, by (D,�).

A generalized interval will be denoted by [x,y], where x; y 2 R. It
follows that the meet (f) and join (g) in lattice (D,�) are given,
respectively, by [a,b] f [c,d] = [a _ c,b ^ d] and [a,b] g [c,d] =
[a ^ c,b _ d].

The set of positive (negative) generalized intervals [a,b], charac-
terized by a 6 b (a > b), is denoted by D+ (D�). It turns out that
(D+,�) is a poset, namely poset of positive generalized intervals. Note
that poset (D+,�) is isomorphic to the poset ðsðRÞ;�Þ of conven-
tional intervals (sets) in R, i.e. ðsðRÞ;�Þ ffi ðDþ;�Þ. We augmented
poset ðsðRÞ;�Þ by a least (empty) interval, denoted by
O = [+1,�1] – we remark that a greatest interval I = [�1, +1] al-
ready exists in sðRÞ. Hence, the complete lattice
ðsOðRÞ ¼ sðRÞ [ fOg;�Þ ffi ðDþ [ fOg;�Þ emerged. In the sequel, we
will employ isomorphic lattices (D+ [ {O},�) and ðsOðRÞ;�Þ, inter-
changeably. We point out that a trivial interval [x,x] is an atom
in the complete lattice ðsOðRÞ;�Þ; where an atom [x,x], by defini-
tion, satisfies both [+1,�1] = O � [x,x] and there is no interval
½a; b	 2 ðsOðRÞ;�Þ such that O � [a,b] � [x,x].

Consider both a positive valuation function v : R! ½0;A	, where
0 < A < +1, and a dual isomorphic function h : R! R. Then, Propo-
sition 6.2 implies that function vD:D ? R given by vD([a,b]) =
v(h(a)) + v(b) is a positive valuation in lattice (D,�). There follow
both vD(O = [+1,�1]) = 0 and vD(I = [�1,+1]) < +1. Therefore,
based on Theorem 6.1 (in the Appendix), the following two inclu-
sion measures emerge in lattice (D,�)

1 Personal communication with Peter Sussner in the context of the Hybrid Artificial
Intelligence Systems (HAIS ’2010) International Conference, 23–25 June 2010, San
Sebastian, Spain. It is understood that the authors here assume full responsibility for
possible errors.
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