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a b s t r a c t

Hierarchical segmentation is a multi-scale analysis of an image and provides a series of simplifying
nested partitions. Such a hierarchy is rarely an end by itself and requires external criteria or heuristics to
solve problems of image segmentation, texture extraction and semantic image labelling. In this
theoretical paper we introduce a novel framework: hierarchical cuts, to formulate optimization problems
on hierarchies of segmentations. Second we provide the three important notions of h-increasing, singular,
and scale increasing energies, necessary to solve the global combinatorial optimization problem of
partition selection and which results in linear time dynamic programs. Common families of such
energies are summarized, and also a method to generate new ones is described. Finally we demonstrate
the application of this framework on problems of image segmentation and texture enhancement.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

To segment an image by a global constraint classically means to
associate a numerical energy with every possible partition of the
space where this image is defined. The best partition is then that
which minimizes the energy. Is this meaningful? Let us suppose
that the energies range from 0 to 103. Using the formula for the
classical Bell's number, a digital square of 5�5 pixels has
4.6�1018 different partitions possible [9]. Each value of energy
thus maps onto millions of billions (4.6�1015) of partitions. What
do we minimize here? Which implicit assumptions underlie the
methods which give a unique minimal cut?

There are only two ways for obtaining (or hoping) uniqueness:
by limiting the number of partitions and by imposing constraints
to the energy. To limit the number of partitions, we can think of
cuts on hierarchies, which provide strong restrictions. To constrain
the energy, we can try and replace the lattice of the integers
by another one, more comprehensive, e.g. a lattice of partitions,
and make hold the minimizations on it. But how to create a
lattice of partitions from a given energy? Which conditions
must we introduce? And if uniqueness is finally ensured (the
lattice structure is precisely made for that), how to reach the
minimal cut in the maze of all partitions? By means of which vital
thread?

There have been several approaches to global constraints for
optimization. There are two methods we contrast here: First, the
graph cuts based optimization, popularized by Boykov [7], second,
partition selection from hierarchies of partitions. The former
emphasize the use of seeds, in addition, they view the space as a

one scale structure. This perspective is illustrated by the search for
a maximum flow in a directed graph, whose segmentation
applications include the optimization of conditional random field
(CRF) [22]. The latter approaches emphasize the scaling of the
space by means of hierarchies, and attach less importance to
labelling questions, in a first step at least.

This paper focusses on the second type of global constraints,
which are approached from the viewpoint of hierarchical cuts (h-
cuts) theory.1 A hierarchy, or pyramid, of image segmentations is
understood as a series of progressive simplified versions of an
initial image, which result in increasing partitions of the space.
How can these partitions cooperate and summarize the hierarchy
into a unique cut, optimal in some sense. Three questions arise
here, namely:

1. Given a hierarchy H of partitions and an energy ω on the partial
partitions, how to combine the classes of this hierarchy for
obtaining a new partition that minimizes ω, and which can be
determined easily?

2. When one energy ω depends on an integer j, i.e. ω¼ωj, how to
generate a sequence of optimal partitions that increase with j,
which therefore should form a optimal hierarchy?

3. Most of the segmentations involve several features (colour,
shape, size, etc.) that we can handle with different energies.
How to combine them?

These questions have been taken up by several authors, over
many years, and by various methods. The most popular energies ω
for hierarchical partitions derive from that of Mumford and Shah
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[25], in which a data fidelity term is summed up with a boundary
regularization term. The optimization turns out to be a trade-off
between these two constraints. In [20], for example, Koepfler et al.
build a pyramid of segmentations, from fine to coarse, by pro-
gressively giving more and more weight to the second term of
Mumford and Shah functional. They stop the region growing when
a certain number of regions is reached. The method initiated by
Salembier and Garrido for generating thumbnails rests on the
same type of energy [33] and also in [34]. They interpret the
optimal cut as the most accurate image simplification for a given
compression rate. The approach has been extended to additive
energies by Guigues et al. [17]. It is always assumed, in all these
studies, that the energy of any partial partition equals the sum of
the energies of its classes, which considerably simplifies the
combinatorial complexity, and answers the above two questions
1 and 2.

However, one can wonder whether additivity is the very
underlying cause of the simplifications, since Soille's constrained
connectivity [38], where the addition is replaced by the supre-
mum, satisfies similar properties. Finally, one finds in literature a
third type of energy, which holds on nodes only, and no longer on
partial partitions. It appears in the method for labeling of Arbeláez
[3], or in the studies of Akçay and Aksoy, in [1]. And again, it yields
optimal cuts.

Is there a common denominator to all these approaches, more
comprehensive than just additivity, and which explains why they
always lead to unique optima? The following paper is a theoretical
attempt to delimit this central concept, and to give answers to the
above questions from (1) to (3). The theory is established in
Sections 3–5, Section 6 presents the algorithms, which are then
applied to the two main families of climbing energies in Section 7.
Before the conclusion, the approach is extended to partial optimi-
zation in Section 9, and some bridges between graph cuts and
hierarchical optimizations are given in Section 10.

2. Basic notions: hierarchies and partitions

This section provides the background required to understand
this paper. The usual distinction between continuous and digital
spaces is not appropriate for the general theory developed in
Sections 3–6. What is actually needed reduces to the two following
hypotheses, which are assumed over the whole paper:

1. the space E to partition is topological and
2. the smallest partition π0 of E has a finite number of classes.

The first assumption allows us to speak of frontiers between
classes or edges (This may not be necessary always). The second
one aims to avoid fractalities and to permit various inductions, in
Proposition 3.2 and in Algorithm 1, among others. Some additional
hypotheses are introduced when the energies are particularized in
Section 7, e.g. “the classes are connected sets”, or “the edges are
simple arcs of R2”. None of these assumptions are specific to image
analysis. Space E may be the concern of parameters, semantic
entities, grammars, NASDAQ quotations, or chamber music as well.

2.1. Partitions, partial partitions

Intuitively, a partition of E of the space under study (Euclidean,
digital, graph, or else) is a division of E into regions that do not
overlap, and whose union restores E in its entirety. These regions
are called classes. More formally, one obtains the classes of a
partition by means of an extensive mapping S : E-PðEÞ such that

x; y∈E⇒SðxÞ ¼ SðyÞ or SðxÞ∩SðyÞ ¼∅:

Below, the symbols S, T stand for classes, and π for partitions.
Partition π1 is smaller than partition π2 when each class of π1 is
included in a class of π2. This condition provides an ordering on
the partitions, called refinement, which in turn induces a complete
lattice. This is equivalent to the ultrametric [29].

Following Ronse [30], a partition πðSÞ associated with a set
S∈PðEÞ is called partial partition (in short p.p.) of E of support S. In
particular, the partial partition of S into the single class S is
denoted by {S}. The family of all partial partitions of set E is
denoted by DðEÞ, or simply by D.

2.2. Hierarchies of partitions

A hierarchy H is a chain of partitions πi, i.e.

H¼ fπi;0≤ i≤nji≤k≤n⇒πi ≤πkg; ð1Þ
where π0 is the finest partition and πn is the partition {E} of E in a
single class. The classes of π0 are called the leaves and E is the root.
Since the number of leaves of π0 is finite (as we have assumed
above), the number n of different partitions of H is also finite.2 The
intermediary classes are called nodes. If the q classes of the
partition πðSÞ are fTu;1≤u≤qg, one writes

πðSÞ ¼ T1⊔‥Tu‥⊔Tq;

where the symbol ⊔ indicates that the classes are concatenated.
Given two p.p. πðS1Þ and πðS2Þ having disjoint supports, πðS1Þ⊔πðS2Þ
is the p.p. whose classes are either those of πðS1Þ or those of πðS2Þ.

Let Si(x) be the class of partition πi of H at point x∈E. Expression
(1) means that at each point x∈E the family fSiðxÞ; x∈E;0≤ i≤ng of
those classes Si(x) that contain x forms a finite chain of nested sets
from the leaf S0ðxÞ to E

SðxÞ ¼ fSiðxÞ;0≤ i≤ng: ð2Þ
Conversely, according to a classical result [8], a family

fSiðxÞ; x∈E;0≤ i≤ng of indexed sets generates the classes of a
hierarchy iff, for i≤ j and x; y∈E

SiðxÞDSjðyÞ or SiðxÞ∩SjðyÞ ¼∅; ð3Þ
conditions which mean that the classes form an ultra-metric space
[4,23]. The partitions of a hierarchy may be represented by their
classes, via a dendrogram, i.e. a tree where each node of bifurca-
tion is a class S, or by their frontiers, via the saliency map of the
edges, which indicates the level in the hierarchy when an edge
disappears [27,14]. The first representation is depicted in Fig. 1 and
the second one in Fig. 2. The classes of πi−1 at level i−1 which are
included in class Si of level i are said to be the sons of Si. Clearly, the
descendants of each node S form in turn a hierarchy H(S) of root S,
which is included in the complete hierarchy H¼H(E). One denotes
by SðEÞ, or just S, the set of all classes S of all partitions involved in
H.

The hierarchy can be loosely seen as a set of partitions contain-
ing superpixels of increasing sizes. Here we do not use the
superpixel terminology, and prefer to distinguish between the
class and partial partition.

2.3. Generating hierarchies of segmentations

In the paper, the focus is not on the methods for obtaining
hierarchies of segmentations, they are considered as inputs. The
main techniques for hierarchical segmentation include the various
Matheron semi-groups of connected filters (openings, alternating

2 One could argue that all components being finite, the underlying space E does
not need to be infinite. However, some problems require a finite number of leaves
embedded in a continuous space, e.g. ground truth by distance function [21].
Similar applications on distance function found in [15].

B. Ravi Kiran, J. Serra / Pattern Recognition 47 (2014) 12–24 13



Download English Version:

https://daneshyari.com/en/article/532101

Download Persian Version:

https://daneshyari.com/article/532101

Daneshyari.com

https://daneshyari.com/en/article/532101
https://daneshyari.com/article/532101
https://daneshyari.com

