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a b s t r a c t

Numerous variants of Self-Organizing Maps (SOMs) have been proposed in the literature, including those
which also possess an underlying structure, and in some cases, this structure itself can be defined by the
user. Although the concepts of growing the SOM and updating it have been studied, the whole issue of
using a self-organizing Adaptive Data Structure (ADS) to further enhance the properties of the underlying
SOM, has been unexplored. In an earlier work, we impose an arbitrary, user-defined, tree-like topology
onto the codebooks, which consequently enforced a neighborhood phenomenon and the so-called tree-
based Bubble of Activity (BoA). In this paper, we consider how the underlying tree itself can be rendered
dynamic and adaptively transformed. To do this, we present methods by which a SOM with an underlying
Binary Search Tree (BST) structure can be adaptively re-structured using Conditional Rotations (CONROT).
These rotations on the nodes of the tree are local, can be done in constant time, and performed so as to
decrease the Weighted Path Length (WPL) of the entire tree. In doing this, we introduce the pioneering
concept referred to as Neural Promotion, where neurons gain prominence in the Neural Network (NN) as
their significance increases. We are not aware of any research which deals with the issue of Neural
Promotion. The advantage of such a scheme is that the user need not be aware of any of the topological
peculiarities of the stochastic data distribution. Rather, the algorithm, referred to as the TTOSOM with
Conditional Rotations (TTOCONROT), converges in such a manner that the neurons are ultimately placed
in the input space so as to represent its stochastic distribution, and additionally, the neighborhood
properties of the neurons suit the best BST that represents the data. These properties have been
confirmed by our experimental results on a variety of data sets. We submit that all these concepts are
both novel and of a pioneering sort.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is a pioneering attempt to merge the areas of Self-
Organizing Maps (SOMs) with the theory of Adaptive Data
Structures (ADSs). Put in a nutshell, we can describe the goal of
this paper as follows: Consider a SOM with n neurons. Rather than
having the neurons merely possess information about the feature
space, we also attempt to link them together by means of an
underlying Data Structure (DS). This DS could be a singly-linked
list, a doubly-linked list or a Binary Search Tree (BST), etc. The
intention is that the neurons are governed by the laws of the SOM
and the underlying DS. Observe now that the concepts of

“neighborhood” and Bubble of Activity (BoA) are not based on
the nearness of the neurons in the feature space, but rather on
their proximity in the underlying DS. Having accepted the above-
mentioned premise, we intent to take this entire concept to a
higher level of abstraction and propose to modify this DS itself
adaptively using operations specific to it. As far as we know,
the combination of these concepts has been unreported in the
literature.

Before we proceed, to place our results in the right perspective,
it is probably wise to see how the concept of neighborhood has
been defined in the SOM literature.

Kohonen, in his book [36], mentions that it is possible to
distinguish between two basic types of neighborhood functions.
The first family involves a kernel function (which is usually of a
Gaussian nature). The second, is the so-called neighborhood set,
also known as the Bubble of Activity (BoA). This paper focuses on
the second type of neighborhood function.

Even though the traditional SOM is dependent on the neural
distance to estimate the subset of neurons to be incorporated into
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the BoA, this is not always the case for the SOM-variants included
in the literature. Indeed, the different strategies described in the
state-of-the-art utilize families of schemes to define the BoA.
We mainly identify three sub-classes.

The first type of BoA uses the concept of the neural distance as
in the case of the traditional SOM. Once the Best Matching Unit
(BMU) is identified, the neural distance is calculated by traversing
the underlying structure that holds the neurons. An important
property of the neural distance between two neurons is that it is
proportional to the number of connections separating them.
Examples of strategies that use the neural distance to determine
the BoA are the Growing Cell Structures (GCS) [24], the Growing
Grid (GG) [25], the Incremental Grid Growing (IGG) [13], the
Growing SOM (GSOM) [3], the Tree-Structured SOM (TSSOM)
[37], the Hierarchical Feature Map (HFM) [43], the Growing
Hierarchical SOM (GHSOM) [50], the Self-Organizing Tree Algo-
rithm (SOTA) [22], the Evolving Tree (ET) [46], the Tree-based
Topology Oriented SOM (TTOSOM) [8], among others.

A second subset of strategies employ a scheme for determining
the BoA that does not depend on the inter-neural connections.
Instead, such strategies utilize the distance in the feature space.
In these cases, it is possible to distinguish between two types of
Neural Networks (NNs). The simplest situation occurs when the
BoA only considers the BMU, i.e., it constitutes an instance of hard
Competitive Learning (CL), as in the case of the Tree-Structured VA
(TSVQ) [37] and the Self-Organizing Tree Map (SOTM) [27].

A more sophisticated and computationally expensive scheme
involves ranking the neurons as per their respective distances to
the stimulus. In this scenario, the BoA is determined by selecting a
subset of the closest neurons. An example of a SOM variant that
uses such a ranking is the Neural Gas (NG) [40].

According to the authors of [46], the SOM-based variants included
in the literature attempt to tackle two main goals: They either try to
design a more flexible topology, which is usually useful to analyze
large data sets, or to reduce the most time-consuming task required
by the SOM, namely, the search for the BMUwhen the input set has a
complex nature. In this paper we focus on the former of the two
mentioned goals. In other words, our goal is to enhance the
capabilities of the original SOM algorithm so as to represent the
underlying data distribution and its structure in a more accurate
manner. We also intend to do so by constraining the neurons so that
they are related to each other, not just based on their neural indices and
stochastic distribution, but also based on a BST relationship.

Furthermore, as a long term ambition, we also anticipate
methods which can accelerate the task of locating the nearest
neuron during the CL phase. This work will present the details of
the design and implementation of how an adaptive process
applied to the BST, can be integrated into the SOM.

Regardless of the fact that numerous variants of the SOM have
been devised, few of them possess the ability of modifying the
underlying topology [13,21,22,26,27,42,46,52]. Moreover, only a
small subset use a tree as their underlying DS [8,21,22,27,46,52].
These strategies attempt to dynamically modify the nodes of the
SOM, for example, by adding nodes, which can be a single neuron
or a layer of a SOM-grid. However, our hypothesis is that it is also
possible to attain to a better understanding of the unknown data
distribution by performing structural tree-based modifications on
the tree, which although they preserve the general topology,
attempt to modify the overall configuration, i.e., by altering the
way by which nodes are interconnected, and yet continue as a BST.
We accomplish this by dynamically adapting the edges that
connect the neurons, by rotating2 the nodes within the BST that

holds the whole structure of neurons. As we will explain later, this
is further achieved by local modifications to the overall structure
in a constant number of steps. Thus, we attempt to use rotations,
tree-based neighbors and the feature space to improve the quality
of the SOM.

1.1. Motivations

Acquiring information about a set of stimuli in an unsupervised
manner, usually demands the deduction of its structure. In general,
the topology employed by any Artificial Neural Network (ANN)
possessing this ability has an important impact on the manner by
which it will “absorb” and display the properties of the input set.
Consider for example, the following: A user may want to devise an
algorithm that is capable of learning a triangle-shaped distribution
as the one depicted in Fig. 1. The SOM tries to achieve this by
defining an underlying grid-based topology and to fit the grid
within the overall shape, as shown in Fig. 1a (duplicated from
[36]). However, from our perspective, a grid-like topology does not
naturally fit a triangular-shaped distribution, and thus, one
experiences a deformation of the original lattice during the
modeling phase. As opposed to this, Fig. 1b shows the result of
applying one of the techniques developed by us, namely the
TTOSOM [8]. As the reader can observe from Fig. 1b, a 3-ary tree
seems to be a far more superior choice for representing the
particular shape in question.

On closer inspection, Fig. 1b depicts how the complete tree fills in
the triangle formed by the set of stimuli, and further, seems to do it
uniformly. The final position of the nodes of the tree suggests that
the underlying structure of the data distribution corresponds to the
triangle. Additionally, the root of the tree is placed roughly in the
center of mass of the triangle. It is also interesting to note that each of
the three main branches of the tree, cover the areas directed towards
a vertex of the triangle respectively, and their sub-branches fill in the
surrounding space around them in a recursive manner, which we
identify as being a holograph-like behavior.

Of course, the triangle of Fig. 1b serves only as a very simple
prima facie example to demonstrate to the reader, in an informal
manner, how both techniques will try to learn the set of stimuli.
Indeed, in real-world problems, these techniques can be employed
to extract the properties of high-dimensional samples.

One can argue that imposing an initial topological configura-
tion is not in accordance with the founding principles of unsu-
pervised learning, the phenomenon that is supposed to occur
without “supervision” within the human brain. As an initial
response we argue that this “supervision” is required to enhance
the training phase, while the information we provide relates to the
initialization phase. Indeed, this is in line with the well-accepted
principle [23], that very little can be automatically learned about a
data distribution if no assumptions are made!

As the next step of motivating this research endeavor, we venture
into a world where the neural topology and structure are themselves
learned during the training process. This is achieved by the method
that we propose in this paper, namely the TTOSOM with Conditional
Rotations (TTOCONROT), which, in essence, dynamically extends the
properties of the above-mentioned TTOSOM. Again, to accomplish this
we need key concepts that are completely new to the field of SOMs,
namely those related to tree-based Adaptive Data Structure (ADS).
Indeed, as demonstrated by our experiments, the results that we have
already obtained have been applauded by the research community,3

and these, to the best of our knowledge, have remained unreported in
the literature.

2 The operation of rotation is the one associated with BSTs, as will be presently
explained.

3 As mentioned earlier, a paper which reported the preliminary results of this
study, won the Best Paper Award in a well-known international AI conference [7].
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