
Towards adaptive learning with improved convergence of deep belief
networks on graphics processing units

Noel Lopes a,b,n, Bernardete Ribeiro a,c

a CISUC – Center for Informatics and Systems of University of Coimbra, Portugal
b UDI/IPG – Research Unit, Polytechnic of Guarda, Portugal
c Department of Informatics Engineering, University of Coimbra, Portugal

a r t i c l e i n f o

Available online 4 July 2013

Keywords:
Deep learning
Deep belief networks
Restricted Boltzmann machines
Contrastive divergence
Adaptive step size
GPU computing

a b s t r a c t

In this paper we focus on two complementary approaches to significantly decrease pre-training time of a
deep belief network (DBN). First, we propose an adaptive step size technique to enhance the convergence
of the contrastive divergence (CD) algorithm, thereby reducing the number of epochs to train the
restricted Boltzmann machine (RBM) that supports the DBN infrastructure. Second, we present a highly
scalable graphics processing unit (GPU) parallel implementation of the CD-k algorithm, which boosts
notably the training speed. Additionally, extensive experiments are conducted on the MNIST and the
HHreco databases. The results suggest that the maximum useful depth of a DBN is related to the number
and quality of the training samples. Moreover, it was found that the lower-level layer plays a
fundamental role for building successful DBN models. Furthermore, the results contradict the pre-
conceived idea that all the layers should be pre-trained. Finally, it is shown that by incorporating
multiple back-propagation (MBP) layers, the DBNs generalization capability is remarkably improved.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Recent advances in deep learning methods have led to a
widespread enthusiasm among pattern recognition and machine
learning (ML) researchers [1,2]. Inspired by the depth structure of
the brain, deep learning architectures encompass the promise of
revolutionizing and widening the range of tasks performed by
computers [1]. In recent months deep learning applications have
been growing both in number and accuracy [1]. Moreover, just a
few months ago, a team of graduate students of Geoffrey E. Hinton
won the top prize in a contest aiming at finding molecules that
might lead to new drugs. This was a particularly impressive
achievement because never before a deep learning architecture
based-system had won a similar competition and the software was
designed with no prior knowledge on how the molecules bind to
their targets, using only a relatively small dataset [1].

Deep models reflect many levels of composition of non-linear
operations in their outputs [2–4]. The idea is to have feature
detector units at each layer (level) that gradually extract more
sophisticated and invariant features from the original raw input
signals. Lower layers aim at extracting simple features that are
then clamped into higher layers, which in turn detect more
complex features [5]. In contrast, shallow models (e.g. two-layers
neural network (NNs), support vector machine (SVMs)) present

very few layers that map the original input features into a
problem-specific feature space [2,6].

Deep architectures can be exponentially more efficient than
shallow ones [7]. The latter may require a huge number of
elements to represent highly varying functions [2–4]. On the other
hand deep architectures can represent these functions efficiently,
in particular when their Kolmogorov complexity is small [2]. Since
each element of the architecture is learned using examples, the
number of computational elements one can afford is limited by the
number of training samples [4]. Thus, the depth of architecture can
be very important from the point of view of statistical efficiency.
Hence, using shallow architectures may result in poor general-
ization models [4]. As a result, deep models tend to outperform
shallow models such as SVMs [2]. Moreover, theoretical results
suggest that deep architectures are fundamental to learn the kind
of complex functions that can represent high-level abstractions
(e.g. vision, language) [4], characterized by many factors of varia-
tion that interact in non-linear ways, making the learning process
difficult [2].

However, the challenge of training deep NNs remained elusive
for a long time [4], until the development of DBNs [8] which were
successfully applied to several domains including classification,
regression, dimensionality reduction, object segmentation, infor-
mation retrieval, language processing, robotics, speech, audio, and
collaborative filtering [2–4,9,6] thus demonstrating its ability to
often outperform state of the art algorithms in these areas [4].

Nevertheless, training a DBN is a computationally expensive
task that involves training independently several RBMs and

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

0031-3203/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.patcog.2013.06.029

n Corresponding author at: UDI/IPG – Research Unit, Polytechnic of Guarda,
Portugal. Tel.: +351 271222690; fax: +351 271220100.

E-mail addresses: noel@ipg.pt (N. Lopes), bribeiro@dei.uc.pt (B. Ribeiro).

Pattern Recognition 47 (2014) 114–127

www.sciencedirect.com/science/journal/00313203
www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2013.06.029
http://dx.doi.org/10.1016/j.patcog.2013.06.029
http://dx.doi.org/10.1016/j.patcog.2013.06.029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2013.06.029&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2013.06.029&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2013.06.029&domain=pdf
mailto:noel@ipg.pt
mailto:bribeiro@dei.uc.pt
http://dx.doi.org/10.1016/j.patcog.2013.06.029


requires a considerable amount of time and effort [10,11].
Moreover, the proper choice of the learning parameters is a
fundamental aspect that affects considerably the networks con-
vergence [10]. Recently, there has been a renewed interest in
accelerating the training of NNs [12]. In particular, concerning the
RBMs, several approaches relying on customized hardware (Field-
Programmable Gate Array (FPGAs)) [13,12] and GPU [14,15] have
been proposed. In our view, the GPU represents the most compel-
ling option, since dedicated hardware fails to meet the expecta-
tions, as it is typically expensive, unreliable, poorly documented,
with reduced flexibility, and obsolete within a few years [16].
Additionally, the FPGA implementations cannot be shared and
validated by other researchers who probably do not have access to
the hardware. GPUs on the other hand are widely available and
relatively inexpensive [16–18].

In this paper we present two complementary approaches to
speedup the training of RBMs and DBNs. First, an adaptive step size
technique that solves the difficulty of choosing an adequate learning
rate and momentum terms, while enhancing the training conver-
gence, is presented. Second, we rely on a multi-core GPU parallel
implementation of the CD algorithm to speedup the training pro-
cess. The resulting implementation is unique in that it incorporates
the proposed adaptive step size technique. Moreover, unlike other
implementations, we have made our code open-source so that
others can readily use and improve it. Finally, we use the resulting
tool to analyze the effects of varying the number of layers and
neurons of a DBN.

This paper is structured as follows. Section 2 details both the
DBN and RBM networks. Section 3 presents the proposed adaptive
step size technique. Section 4 describes the GPU parallel imple-
mentation. Section 5 asserts the validity of both approaches on
speeding up the training process and analyzes the effects of
varying the number of layers and neurons in a DBN. Finally
Section 6 draws the conclusions and points out future work.

2. Deep belief network

A DBN is composed of several RBM layers. Each RBM receives
the inputs of the previous layer and feeds the RBM in the next
layer. Hence, training a DBN consists of independently training
each one of the RBMs, starting by the lower-level RBM and
progressively moving up in the hierarchy.

2.1. Restricted Boltzmann machine

An RBM is an energy-based generative model that consists of a
layer of I binary visible units (observed variables), v∈f0;1gI , and a
layer of J binary hidden units (explanatory factors), h∈f0;1gJ , with
bidirectional weighted connections [19], as depicted in Fig. 1.
RBMs follow the encoder–decoder paradigm [20] where both the
encoded representation and the (decoded) reconstruction are
stochastic by nature. The encoder–decoder architecture is useful
because: (i) after training, the feature vector can be computed in a
very fast way and (ii) by reconstructing the input we can assess
how well the model was able to capture the relevant information
from the data [20].

Given an observed state, the energy of the joint configuration of
the visible and hidden units ðv;hÞ is given by (1)

Eðv;hÞ ¼ �cv⊤�bh⊤�v⊤Wh¼� ∑
I

i ¼ 1
civi� ∑

J

j ¼ 1
bjhj� ∑

J

j ¼ 1
∑
I

i ¼ 1
Wjivihj;

ð1Þ
where c∈RI represents the bias of the visible units, b∈RJ the bias of
the hidden units and W∈RJ�I a matrix containing the RBM
connection weights. In order to break symmetry, typically the

weights are initialized with small random values (e.g. between
�0.01 and 0.01) [19]. The hidden bias, bj, can be initialized with a
large negative value (e.g. �4) in order to encourage sparsity and
the visible units bias, ci, to logðp̂i=ð1�p̂iÞÞ, where p̂i is the propor-
tion of training vectors in which vi ¼ 1 [19]. Fig. 2 shows the
advantages of initializing ci in this manner.

The RBM assigns a probability for each configuration ðv;hÞ,
using (2)

pðv;hÞ ¼ e�Eðv;hÞ

Z
; ð2Þ

where Z is a normalization constant called partition function by
analogy with physical systems, given by the sum of all energy
configurations [4,19,21]

Z ¼ ∑
v;h

e�Eðv;hÞ: ð3Þ

Since there are no connections between any two units within
the same layer, given a particular random input configuration, v,
all the hidden units are independent of each other and the
probability of h given v becomes

pðhjvÞ ¼∏
j
pðhj ¼ 1jvÞ; ð4Þ

where

pðhj ¼ 1jvÞ ¼ s bj þ ∑
I

i ¼ 1
viWji

 !
; ð5Þ

and sðxÞ is the sigmoid function 1=ð1þ e�xÞ. For implementation
purposes, hj is set to 1 when pðhj ¼ 1jvÞ is greater than a given
random number (uniformly distributed between 0 and 1) and
0 otherwise. Similarly given a specific hidden state, h, the prob-
ability of v given h is given by (6)

pðvjhÞ ¼∏
i
pðvi ¼ 1jhÞ; ð6Þ

where

pðvi ¼ 1jhÞ ¼ s ci þ ∑
J

j ¼ 1
hjWji

 !
: ð7Þ

Fig. 1. Schematic representation of a restricted Boltzmann machine (RBM).

Fig. 2. Reconstruction of the MNIST digits made by a newly initialized restricted
Boltzmann machine (RBM) ðp̂ i is the proportion of vectors in which the pixel
i is on).

N. Lopes, B. Ribeiro / Pattern Recognition 47 (2014) 114–127 115



Download English Version:

https://daneshyari.com/en/article/532109

Download Persian Version:

https://daneshyari.com/article/532109

Daneshyari.com

https://daneshyari.com/en/article/532109
https://daneshyari.com/article/532109
https://daneshyari.com

