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ARTICLE INFO ABSTRACT

Available online 11 April 2013 This paper presents a technique for reducing speckle in Polarimetric Synthetic Aperture Radar (PolSAR)
imagery using nonlocal means and a statistical test based on stochastic divergences. The main objective
is to select homogeneous pixels in the filtering area through statistical tests between distributions. This
proposal uses the complex Wishart model to describe PolSAR data, but the technique can be extended to
other models. The weights of the location-variant linear filter are function of the p-values of tests which
verify the hypothesis that two samples come from the same distribution and, therefore, can be used
to compute a local mean. The test stems from the family of (h—¢) divergences which originated in
Information Theory. This novel technique was compared with the Boxcar, Refined Lee and IDAN filters.
Image quality assessment methods on simulated and real data are employed to validate the performance
of this approach. We show that the proposed filter also enhances the polarimetric entropy and preserves
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the scattering information of the targets.
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1. Introduction

Among the remote sensing technologies, Polarimetric Synthetic
Aperture Radar (PolSAR) has achieved a prominent position. PoISAR
imaging is a well-developed coherent microwave remote sensing
technique for providing large-scale two-dimensional (2-D) high spatial
resolution images of the Earth's surface dielectric properties [21].

In SAR systems, the value at each pixel is a complex number:
the amplitude and phase information of the returned signal. Full
PolSAR data is comprised of four complex channels which result
from the combination of the horizontal and vertical transmission
modes, and horizontal and vertical reception modes.

The speckle phenomenon in SAR data hinders the interpretation
these data and reduces the accuracy of segmentation, classification
and analysis of objects contained within the image. Therefore,
reducing the noise effect is an important task, and multilook
processing is often used for this purpose in single- and full-channel
data. In the latter, such processing yields a covariance matrix in each
pixel, but further noise reduction is frequently needed.
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According to Lee and Pottier [21], Polarimetric SAR image
smoothing requires preserving the target polarimetric signature.
Such requirement can be posed as (i) each element of the image
should be filtered in a similar way to multilook processing by
averaging the covariance matrix of neighboring pixels; and
(ii) homogeneous regions in the neighborhood should be adap-
tively selected to preserve resolution, edges and the image quality.
The second requirement, i.e. selecting homogeneous areas given
similarity criterion, is a common problem in pattern recognition.
It boils down to identifying observations from different stationary
stochastic processes.

Usually, the Boxcar filter is the standard choice because of its
simple design. However, it has poor performance since it does not
discriminate different targets. Lee et al. [18,19] propose techniques
for speckle reduction based on the multiplicative noise model
using the minimum mean-square error (MMSE) criterion. Lee et al.
[20] proposed a methodology for selecting neighboring pixels with
similar scattering characteristics, known as Refined Lee filter.
Other techniques use the local linear minimum mean-squared
error (LLMMSE) criterion proposed by Vasile et al. [37], in a similar
adaptive technique, but the decision to select homogeneous areas
is based on the intensity information of the polarimetric coher-
ency matrices, namely intensity-driven adaptive-neighborhood
(IDAN).

Cetin and Karl [4] presented a technique for image formation
based on regularized image reconstruction. This approach employs
a tomographic model which allows the incorporation of prior
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information about, among other features, the sensor. The resulting
images have many desirable properties, reduced speckled
among them. Our approach deals with data already produced
and, thus, does not require interfering in the processing protocol of
the data.

Osher et al. [26] presented a novel iterative regularization
method for inverse problems based on the use of Bregman
distances using a total variation denoising technique tailored to
additive noise. The authors also propose a generalization for
multiplicative noise, but no results with this kind of contamination
are shown. The main contributions were the rigorous convergence
results and effective stopping criteria for the general procedure,
that provides information on how to obtain an approximation of
the noise-free image intensity. Goldstein and Osher [16] presented
an improvement of this work using the class of L,-regularized
optimization problems, that originated in functional analysis for
finding extrema of convex functionals. The authors apply this
technique to the Rudin—Osher-Fatemi model for image denoising
and to a compressed sensing problem that arises in magnetic
resonance imaging. Our work deals with full polarimetric data, for
which, to the best of our knowledge, there are no similar results
that take into account its particular nature: the pixels values are
definite positive Hermitian complex matrices.

Soccorsi et al. [29] presented a despeckling technique for
single-look complex SAR image using nonquadratic regularization.
They use an image model, a gradient, and a prior model, to
compute the objective function. We employ the full polarimetric
information provided by the multilook scaled complex Wishart
distribution.

Chambolle [5] proposed a total variation approach for a
number of problems in image restoration (denoising, zooming
and mean curvature motion), but under the Gaussian additive
noise assumption.

Li et al. [22] propose the use of a particle swarm optimization
algorithm and an extension of the curvelet transform for speckle
reduction. They employ the homomorphic transformation, so their
technique can be used either in amplitude or intensity data, but
not in complex-valued imagery, as is the case we present here.

Wong and Fieguth [41] presented a novel approach for per-
forming blind decorrelation of SAR data. They use a similarity
technique between patches of the point-spread function using a
Bayesian least squares estimation approach based on a Fisher—
Tippett log-scatter model. In a similar way, Selbo and Eltoft [30]
assume a Gamma distribution in a wavelet-based speckle reduc-
tion procedure, and they estimate all the parameters locally
without imposing a fixed number of looks (which they call “degree
of heterogeneity”) for the whole image.

Buades et al. [3] proposed a methodology, termed Nonlocal
Means (NL-means), which consists of using similarities between
patches as the weights of a mean filter; it is known to be well
suited for combating additive Gaussian noise. Deledalle et al. [11]
applied this methodology to PolSAR data using the Kullback-Leibler
distance between two zero-mean complex circular Gaussian laws.
Following the same strategy, Chen et al. [6] used the test for equality
between two complex Wishart matrices proposed by Conradsen
et al. [8].

This paper proposes a new approach for speckle noise filtering
in PolSAR imagery: an adaptive nonlinear extension of the
NL-means algorithm. This is an extension of previous works
[33,34], where we used an approach similar to that of Nagao and
Matsuyama [24]. Overlapping samples are compared based on
stochastic distances between distributions, and the p-values
resulting from such comparisons are used to build the weights
of an adaptive linear filter. The goodness-of-fit tests are derived
from the divergences discussed by Frery et al. [15] and Nascimento
et al. [25]. The new proposal is called Stochastic Distances Nonlocal

Means (SDNLM) and amounts to using those observations which
are not rejected by a test seeking for a strong stationary process.

This paper is organized as follows. First, we summarize the
basic principles that lead to the complex Wishart model for full
polarimetric data. In Section 3 we recall the nonlocal means
method. Our approach for reducing speckle in PolSAR data using
stochastic distances between two complex Wishart distributions
is proposed in Section 4. Image Quality Assessment is briefly
discussed in Section 5. Results are presented in Section 6, while
Section 7 concludes the paper.

2. The complex wishart distribution

PoISAR imaging results in a complex scattering matrix, which
includes intensity and relative phase data [15]. Such matrices have
usually four distinct complex elements, namely Sy, Syy, Sy, and
Suy, where H and V refer to the horizontal and vertical wave
polarization states, respectively. In a reciprocal medium, which is
most common situation in remote sensing, Syy =Sy so the
complex signal backscattered from each resolution cell can be
characterized by a scattering vector Y with three complex
elements (see [36]).

Thus, we have a scattering complex random vector Y =
[Stu» Sy, Swlt, where [-] indicates vector transposition. In general,
PolSAR data are locally modeled by a multivariate zero-mean
complex circular Gaussian distribution that characterize the scene
reflectivity [35,36], whose probability density function is

ST = o exp(-YE Y,

where |- | is the determinant, and the superscript ‘%’ denotes the
complex conjugate of a vector; X is the covariance matrix of Y. This
distribution is defined on C3. The covariance matrix X, besides
being Hermitian and positive definite, has all the information
which characterizes the scene under analysis.

Multilook processing enhances the signal-to-noise ratio. It is
performed averaging over L ideally independent looks of the same
scene, and it yields the sample covariance matrix Z given, in each
pixel, by Z = L'lZlL: Y. Y* where L is the number of looks.

Goodman [17] proved that Z follows a scaled multilook com-
plex Wishart distribution, denoted by Z~W(Z, L), and characterized
by the following probability density function:

B L3L\Z’|L_3

-1
= mexp{—L tr(X2")}, (1)

fz(Z":ZE,1)

where, for L23, I'3(L) = 2°[1?_ ,I'(L-i), I'(-) is the gamma function,
tr(-) is the trace operator, and the covariance matrix Z is given by
E(SunSiy}  E(SuuSyy} E{ShuSiv}

E{SvnSty}  E{SvnuSt)  E(SvnSiv} |,

E{SwSiu} E(SwSty) E{SwSiv}

> =E{YY*} =

where E{-} denote expectation. Anfinsen et al. [2] removed the
restriction L=3. The resulting distribution has the same form as
in (1) and is termed the “relaxed” Wishart. We assume this last
model, and we allow variations of L along the image.

The support of this distribution is the cone of positive definite
Hermitian complex matrices [13].

The parameters are usually estimated by maximum likelihood
(ML) due to its statistical properties. Let Z, be a random matrix
which follows a W(Z, L) law. Its log-likelihood function is given by

¢r(Z,L)=3Llog L+ (L-3)log|Z;|-L log |X|-3 log =

2
- ¥ log rl—q)-Ltr(Z'Z)),
q=0
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