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a b s t r a c t

Content-aware, edge-preserving smoothing techniques have gained visibility in recent years. However,
they have had a rather limited impact on the edge detection literature compared to content-unaware
(linear) techniques, often based on Gaussian filters. In this work, we focus on Anisotropic Diffusion,
covering its initial definition by Perona and Malik and subsequent extensions. A visual case study is used
to illustrate their features. We perform a quantitative evaluation of the performance of the Canny
method for edge detection when substituting linear Gaussian smoothing filters by Anisotropic Diffusion.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Edge detection is often based on the analysis of intensity
differences within pixel neighbourhoods. Intuitively, this leads to
the computation of the partial derivatives or the Laplacian of a signal
[1,2]. However, due to the discrete nature of the data, the classical
concept of differentiation cannot be applied. The ill-posedness of the
gradient computation is partially solved by regularizing (smoothing)
the image. The simplest and most common way to do so is content-
unaware smoothing (CUS), which is usually performed using two-
dimensional Gaussian filters [3,4]. CUS techniques remove noise and
image imperfections at the cost of blurring the edges [5]. For this
reason, there is a need for smoothing techniques that regularize the
pixel intensities within the image objects, while preserving (or even
sharpening) their boundaries. As enunciated by Monteil and Begh-
dadi [6], the goal is to combine a low pass filtering in homogeneous
regions and a sharpening effect in transition regions.

Content-aware smoothing (CAS) techniques adjust their beha-
viour based upon local features. One of the most relevant CAS
techniques is Anisotropic Diffusion (AD), initially proposed by Perona
and Malik [5], who formulate the smoothing problem in terms of
heat diffusion. They were aiming at a process in which the image
properties (in this case, intensity) would spread inside the objects
but not across their boundaries. In this way, AD allows heat
(intensity) diffusion inside the objects, inhibiting the heat transfer

across the edges. Following [5], different approaches to AD have been
explored, incorporating notions from statistics [7], fuzzy logic [8], and
photometry [9], among others. Moreover, AD has proven valid not
only for image regularization, but also as inpainting method in the
reconstruction of missing (deleted) information [10–12].

Despite the variety of CAS techniques (either based on AD or
not), most of the works on edge detection still use linear filtering
[13,14] or do not even regularize the image [15,16]. One of the
reasons is the lack of quantitative comparisons confronting CUS
and CAS techniques. Indeed, most of the works proposing CAS for
edge detection contain sample images where the improvements
can be observed, but do not quantify the results. The few works
using objective measures [17,18] are related to noise removal. Note
that the lack of quantitative comparisons is not exclusive to CAS
proposals, but rather endemic to the edge detection field [19], to
such an extent that Papari and Petkov state that quantitative
comparison is absent from most of the works in edge detection [20].

In this work we take AD as a paramount example of CAS, and
we list three objectives:

(a) to briefly analyze the technical specifications of the relevant
AD methods for edge detection,

(b) to illustrate the effect of such AD methods on natural
images, and

(c) to quantify the improvement that can be achieved by a typical
edge detector if replacing Gaussian linear filtering by any of
the aforementioned AD methods.

We approach these tasks from a practical point of view. First, we
review the most relevant AD methods in the literature, pointing
out their connection with the original proposal by Perona and
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Malik, as well as listing their parameters and settings. Second, we
apply different AD methods to a natural image, in order to observe
and compare the changes the image undergoes. Third, we perform
a quantitative comparison of the results produced by the Canny
method for edge detection [3] when combining it with Gaussian
Linear Filtering (GLF) and different AD methods. In this work we
consider the scalar approach to AD [5,7], as well as approaches
based on vectorial gradients [21–23] and speckle models [18,24].

The remainder of this work is organized as follows. Section 2
contains a review of the literature. In Section 3 we analyze how
different AD methods use local information to drive the diffusion
process. Section 4 includes a visual example of the transformation
of an image when different AD methods are applied. To conclude,
the experimental results and conclusions are presented in Sections
5 and 6, respectively.

2. Anisotropic Diffusion

Anisotropic Diffusion is an example of scale-space image
processing [5,22,25,26]. It stems from the application of the heat
diffusion equation to digital images. Considering an image I, the
heat flux ϕ within the image is given by Fick's equation

ϕ¼�D � ∇I; ð1Þ

where the relationship between the gradient ∇I and the actual flux
j is expressed by a positive definite, symmetric matrix D referred
to as diffusion tensor. Since the diffusion process does not alter the
overall energy in the image, its local variation is driven by
δt I¼�divϕ [22], where div stands for the divergence operator.
Hence, we have that

δt I¼ divðD � ∇IÞ ð2Þ

expresses the energy (heat) variation at every position in the
image. The abstraction in Eq. (2) has been embodied in different
ways, leading to the creation of a wide family of AD methods. In
this work we focus on five such methods, which we consider
representative:

(i) Perona–Malik Anisotropic Diffusion: The first reference to the
application of AD to digital images is due to Perona and Malik
[5]. The authors consider the diffusion process on an image I
to be modelled by

δt I¼ divðgðj∇Ij2Þ � ∇IÞ; ð3Þ
where the function g is an edge-stopping, decreasing function
weighing the conductivity of the image depending upon the
Euclidean magnitude of the gradient. However, they propose
a simpler, discrete scheme based on the transfer of energy
between each pixel and its four direct neighbours. Despite its
simplicity, this scheme has some interesting properties such
as the preservation of the energy or the fact that it does not
create new (local) maxima or minima. We will refer to this
method as Perona–Malik AD (PMAD).
Almost at the same time, Saint-Marc et al. [27] introduced the
notion of adaptive smoothing, which turns out to be an
alternative implementation of PMAD (see [28] for a historical
perspective). Catté et al. [29] proposed to compute the
gradients on a regularized version of the image I, such as
Is ¼ GsnI, where Gs represents a Gaussian filter with standard
deviation s and n is the convolution operator. In this way,
the authors claim to solve the inconsistencies of PMAD, more
specifically the fact that small changes in the initial image can
produce divergent solutions [29]. Subsequently, many authors
have revisited PMAD, mainly focusing on the instability of the

process and the staircasing effect (creation of non-existing
step edges) [30–32].

(ii) Diffusion Tensor-based Anisotropic Diffusion: Cottet and Ger-
main [23] argue against the use of the name AD in [5], since
PMAD makes use of scalar conductivity values instead of
diffusion tensors. From Eq. (2) we obtain isotropic and non-
linear isotropic diffusion using

D¼ 1 0
0 1

� �
or D¼

gðj∇IjÞ 0
0 gðj∇IjÞ

 !
; ð4Þ

respectively [33]. In order to obtain an anisotropic behaviour,
we must use the direction of ∇I, not only its magnitude.
Diffusion Tensor-based AD (DTAD) is based on Eq. (2), where
the eigenvectors of D are v1∥∇Is and v2⊥∇Is. In order not to
smoothen across the edges, the eigenvalues are set to λ1 ¼
gðj∇Isj2Þ and λ2 ¼ 1 [22].

(iii) Structure Tensor-based Anisotropic Diffusion: A structure tensor
(Jρ) is a symmetric matrix associated with a gradient ∇Is
constructed as

Jρð∇IsÞ ¼ Gρnð∇Is⊗∇IsÞ: ð5Þ
The structure tensor is useful to characterize the underlying
structure and features of the image, not only the local
intensity variations. It differs from the diffusion tensor in
the fact that it captures the orientation of the intensity
change, not its direction. The integration parameter ρ has to
be set according to the size of the underlying image structure
[22]. Note that s and ρ play similar roles, although they have
different purposes. The parameter s aims to remove (or
reduce the impact of) noise and imperfections in the image,
and hence is related to the contamination of the image, not to
its content. Alternatively, ρ takes values according to the size
of the structures and object silhouettes one wants to preserve.
When using structure tensors, we replace the matrix D in
Eq. (2) by a matrix with the same eigenvectors as Jρ and
eigenvalues

λ1ðμ1Þ ¼ gðμ1Þ and λ2 ¼ 1 ð6Þ
where μ1 is the greatest eigenvalue of Jρ. The AD method
based on structure tensors is referred to as STAD.

(iv) Coherence Enhancing Anisotropic Diffusion: The purpose of
Coherence Enhancing AD (CEAD) [34] is intrinsically different
from that of the other AD methods. In this approach the
smoothing is not prevented across the edges, but empowered
along them instead. That is, there is heat transfer in edge
regions, but it takes place along the edges. In this approach
the matrix D in (2) is replaced by a matrix with the same
eigenvectors μ1 and μ2 as the structure tensor Jρ and eigen-
values

λ1 ¼ α and λ2 ¼
α; if μ1 ¼ μ2
α þ ð1�αÞ � gðμ1�μ2Þ; otherwise

;

(
ð7Þ

where α∈�0;1½ is a regularization parameter that ensures a
certain amount of diffusion to occur in situations with isotropic
intensity change, and takes a positive value close to 0 [21].

(v) Speckle Reducing Anisotropic Diffusion: Some authors have pre-
sented AD methods whose local behaviour is not determined by
gradients. A relevant example is the methods based on noise
estimation, such as Speckle Reducing Anisotropic Diffusion
(SRAD), introduced by Yu and Acton [18]. Speckle noise is a very
common type of contamination in digital images. It is manifested
as random impulse noise introducing normally distributed varia-
tions in the pixels of an image. SRAD intends to regularize the
image in the presence of speckle, while not carrying out
regularization in homogeneous regions or edge regions. In SRAD
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