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a b s t r a c t

For hyperspectral target detection, it is usually the case that only part of the targets pixels can be used as
target signatures, so can we use them to construct the most proper background subspace for detecting all
the probable targets? In this paper, a dynamic subspace detection (DSD) method which establishes a
multiple detection framework is proposed. In each detection procedure, blocks of pixels are calculated by
the random selection and the succeeding detection performance distribution analysis. Manifold analysis
is further used to eliminate the probable anomalous pixels and purify the subspace datasets, and the
remaining pixels construct the subspace for each detection procedure. The final detection results are then
enhanced by the fusion of target occurrence frequencies in all the detection procedures. Experiments
with both synthetic and real hyperspectral images (HSI) evaluate the validation of our proposed DSD
method by using several different state-of-the-art methods as the basic detectors. With several other
single detectors and multiple detection methods as comparable methods, improved receiver operating
characteristic curves and better separability between targets and backgrounds by the DSD methods are
illustrated. The DSD methods also perform well with the covariance-based detectors, showing their
efficiency in selecting covariance information for detection.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Targets in the remote sensing domain refer to ground objects of
special interest [1–3]. For example, vehicles on a road comprise
the targets when the extraction of their accurate positions is the
main task. The spectral differences between target and non-target
backgrounds is the foremost feature in target detection by hyper-
spectral remote sensing imagery, which makes it a two-class
classification problem. However, targets in remote sensing images
usually occupy only a small fraction of the whole image, with each
having a limited size. As a result, the minimization strategy for the
misclassification error cannot be used in target detection, other-
wise all the targets would be labeled as background [2,3].

Remote sensing target detection methods contrarily focus on
maximizing the probability of detection with a certain constant
false alarm rate, which originates from the signal estimation and
detection theory in the communications field [4–6]. Thus, the
target pixel is considered as the signal of interest to be detected. In
this way, the problem is transformed into a signal processing
procedure. This is the main idea behind the signal detection based
methods, including the finite impulse response filter, likelihood
ratio test, hypothesis testing, and so on [1,2,7–9]. Other methods

exploit the linear spectral mixture [10,11], assuming that each
pixel consists of different endmembers. “Endmember” refers to a
pure pixel of the land object in the image and presents a unique
spectral feature. The difference between different endmembers is
the key to interpreting hyperspectral images. This approach
is widely used in spectral unmixing from hyperspectral images
[12, 13]. However, the distinction is that unmixing decomposes the
scene into all the constituent materials in their proportions,
whereas target detection should give a more or less binary
indication of the presence of a single material or class of interest.

In spite of their different theoretic origins, many detectors can be
considered as subspace-based detectors as the information about
targets and backgrounds is reserved in the subspace. Two important
ways of constructing subspaces shall now be considered. One way is
to use the different endmembers’ spectra as a basis to compose the
target subspace and background subspace, respectively. In other
words, the composite units in the spectral mixture model are used.
The other approach is to selectively choose bands from the image as
a subset to make up the subspace, which is actually a band selection
procedure. However, both approaches have the following draw-
backs. They both use the same subspace background construction
method for different imagery; that is, they choose the whole dataset
as background. The resulting subspace will cause a drift to the
inverse direction of the main direction of the subspace in the
feature space [15], or a contaminated background subspace [16–18].
Research has been undertaken to prove that different pixels in
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different regions usually contain different backgrounds [19], due to
the discontinuous and inhomogeneous nature of real-world land-
scape composition.

Other researchers have reported that the spectrally similar pixels
are actually on the same patch in the whole manifold feature space
[20–25], which is another clue as to the local subspace construction.
Furthermore, a locally constructed subspace provides an efficient way
to avoid the limitation of the data distribution [26–28]. A typical
example is the Gaussian distribution assumption, which is the one
most widely used in most detection methods, although, in many
cases, the assumption is not reasonable [29–31, 33]. In fact, with the
local subspace, only the linear relationship between the pixel under
observation and the neighborhood pixels is used. Therefore, no
assumption about the data distribution is taken into consideration.

Above all, targets pixels usually reside in parts of the feature
space, so a rigid global subspace may not be able to model
different pixels very well. The corresponding background subspace
should be elaborately constructed from certain pixels of the image
dataset. The problem then lies in the fact that with only certain of
the target pixels for training in the image can we find the most
suitable background subspace for the exact and robust detection of
the rest of the target pixels. Several studies have been undertaken
on dynamic subspace construction for a classification problem
[34–36]. After dynamic subspace formulation, a fusion strategy is
usually undertaken. Some work on the fusion method for hyper-
spectral target detection has already been undertaken [37–40].

In this paper, we take a dynamic selection strategy as the
method for constructing the subspace. However, since the spectral
resolution is one of the main advantages for hyperspectral images
to be able to differentiate a target of interest from the spectrally
similar background objects, the subspace construction manner in
previous papers, which choose a subset of bands from the
complete set of bands, known as band selection, is not used. In
contrast, the subspace is not selected randomly from the different
bands, but constructed by the randomly selected pixels. Iterative
procedures are then carried out to evaluate the performance of the
dynamic subspaces to detect the training target pixels and, finally,
to obtain the most suitable one for each detection procedure. The
criterion is to determine the proper number of pixel blocks for the
subspace construction for the detector in each detection proce-
dure. We then choose from the image dataset those pixel blocks
under this number that present the optimal detection perfor-
mance for each detection procedure. Furthermore, the manifold
patch structure is also taken into consideration in optimizing the
subspaces by eliminating the anomalous pixels on the manifold
feature space. Then, with the remaining pixels, multiple detection
procedures based on the corresponding subspaces are undertaken
independently, and fused afterwards to obtain a robust detection
result. Our contributions in this manuscript can be summarized as

(1) Given limited training target pixels, our method tries to find
the most suitable pixels to construct the subspace for the
detection, so as to have enough discriminative ability to
separate the individual targets.

(2) With two nested performance analysis procedures, our
method is able to choose the most informative pixels for the
construction of the detector in a certain detection procedure.

(3) By constructing a multiple-detector strategy, our method is
believed to be robust with regard to the complex backgrounds
in the image scene. Despite the possible contamination of
targets in the formulation of the particular detection proce-
dure, target pixels can still be determined by a final fusion of
all the detection procedures.

(4) The proposed dynamic subspace detection (DSD) theory is
applicable to a covariance-based detector. It is also a useful
background statistics estimation and selection criteria, and it

provides a standard framework for optimized detection meth-
ods employing any basic state-of-the-art detector.

The remainder of this paper is organized as follows. Section 2
formulates the proposed DSD framework. Section 3 describes the
experiments used to test our proposed method and presents the
results of these experiments in comparison with other state-of-the-
art detection methods. Finally, Section 4 summarizes the paper.

2. The dynamic subspace detection (DSD) method

In this paper, the background pixels’ dataset is computed from
the whole dataset. The choosing criterion is to ensure that the
corresponding subspace can better augment the separability
between target and non-target pixels in the detection procedure.
Separability is the key to judging the performance of target
detectors. It refers to the ability to separate a target of interest
from the background by a certain detection method. It can be
measured by the statistics of the target and background values
after detection. A promising method should be able to suppress
the background into a comparably low-value range and extrude
the target pixels into a high-value range. The majority of the target
pixels’ values and the majority of the background pixels’ values are
expected to be distributed in a diverse range, or a gap between
them is preferred. The target subspace is fixed as the number of
target pixels is so low. Therefore, the manufacture of the back-
ground subspace is the key step. The following estimations are
done on a whole single hyperspectral image. With the training
target pixels, we want to choose the most suitable background
pixels for constructing the background subspace.

2.1. Determination of the blocks for each subspace construction

Due to the rarity of the target pixels, the target subspace is
actually made up of the mean spectra of the target training
samples, or the signatures from the spectral library. Meanwhile,
the background subspace is dynamically chosen from the whole
dataset. In the dynamic subspace classifiers, the number of bands
used to construct each subspace has to be determined [36],
whereas in our method, the number of pixels chosen to construct
the background subspace should be determined.

Unlike dynamic subspace classification (DSC) [35,36], which
chooses bands from raw high-dimension samples by randomly
projecting them into a subspace where all the samples have a zero
constant in the unselected dimension, a method of assembly is
used in our method. A subset of pixels are randomly selected from
the whole dataset and assembled to form a subspace for a certain
detector, such as the adaptive matched subspace detector (AMSD),
adaptive cosine estimator (ACE), and so on [23]. This procedure is
based on the assumption that a subset, instead of the whole
dataset, may be more appropriate and reasonable for a linear
subspace [33], which is consistent with the “locally linear, globally
non-linear” assumption in manifold learning methods [20,41–45].

In order to obtain typical background pixels for the subspace
construction, and to increase the probability of hitting pure pixels,
a block structure is used as the basic choosing unit, instead of a
single pixel. The whole image is segmented into many blocks,
and a block is defined as a square with a size of f loorð
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Þ, where L is the band number, and f loorðÞ refers to the

integral function. Each pixel corresponds to a certain block and lies
in the center of the block, so the blocks are overlapping. The
purpose is to ensure that the detector is composed of the more
representative pixels. The number of blocks is determined by an
evaluation of the importance of the block datasets with different
numbers of blocks. A vector probability mass function, termed Cd,
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