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a b s t r a c t

Spectral clustering aims to partition a data set into several groups by using the Laplacian of the graph
such that data points in the same group are similar while data points in different groups are dissimilar to
each other. Spectral clustering is very simple to implement and has many advantages over the traditional
clustering algorithms such as k-means. Non-negative matrix factorization (NMF) factorizes a non-
negative data matrix into a product of two non-negative (lower rank) matrices so as to achieve
dimension reduction and part-based data representation. In this work, we proved that the spectral
clustering under some conditions is equivalent to NMF. Unlike the previous work, we formulate the
spectral clustering as a factorization of data matrix (or scaled data matrix) rather than the symmetrical
factorization of the symmetrical pairwise similarity matrix as the previous study did. Under the NMF
framework, where regularization can be easily incorporated into the spectral clustering, we propose
several non-negative and sparse spectral clustering algorithms. Empirical studies on real world data
show much better clustering accuracy of the proposed algorithms than some state-of-the-art methods
such as ratio cut and normalized cut spectral clustering and non-negative Laplacian embedding.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years spectral clustering has become one of the most
popular modern clustering methods, e.g., [1,3–6]. Spectral cluster-
ing divides a data set into non-overlapped groups such that the
data points in same group are similar as much as possible and the
data points in different groups are dissimilar as much as possible.
Spectral clustering is based on the spectral graph theory [2]. The
main tools for spectral clustering are graph Laplacian matrices.
There are different graph Laplacian matrices used for spectral
clustering in the literature such as unnormalized graph Laplacian
[3,4], normalized graph Laplacian [5,6]. The basic steps of the
spectral clustering are the first to construct a similarity graph from
data and then to compute the first k eigenvectors corresponding to
the k smallest eigenvalues of the graph Laplacian matrix which is
derived from the similarity graph, and finally use the k-means
algorithm to cluster the k dimensional row vectors of the matrix
formed by the first k eigenvectors of the Laplacian as columns
[1,5,6].

Spectral clustering can be understood from the point of view of
the graph cut. For the data given in the form of a similarity graph,
one wants to partition the graph into subgraphs such that the

edges between different subgraphs have low weights and the
edges within a subgraph have high weights. Spectral clustering
can be derived as an approximation of graph partition problem
which can be solved by minimizing graph cuts. There are different
graph cuts used for graph partition such as ratio cut (Rcut) [3],
normalized cut (Ncut) [5] and min–max cut (MMcut) [7]. Spectral
clustering also has a margin-based perspective [8]. Spectral
clustering methods are widely applied in image segmentation
[5,9], gene network analysis [10], speech separation [11] and many
other fields whenever clustering methods are employed.

Non-negative matrix factorization (NMF) was first introduced
into machine learning and pattern recognition communities by
Lee and Seung [12,13]. NMF decomposes a non-negative data
matrix into a product of two non-negative matrices. The distin-
guished feature of NMF is the non-negativity of all elements of the
matrices involved. This non-negativity is often encountered in real
world data such as intensity value of image pixels, document-term
matrix, rating matrix, etc. NMF allowing only non-negative factor-
ization makes the data representation to have part-based meaning
[12]. Recent extensions of NMF include convex NMF [14], ortho-
gonal NMF [15], convex-hull NMF [16], etc.

NMF has been proved to be closely related to some classical
algorithms in machine learning. For example, probabilistic latent
semantic indexing (PLSI) has been proved to be equivalent to NMF
[17], kernel k-means has also been proved to be equivalent to NMF
[18], and it is found that the spectral clustering with Ncut is also
equivalent to NMF [19]. A non-negative Laplacian embedding
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(equivalent to Rcut spectral clustering) has been proposed and its
connection to NMF has been revealed in [20].

In this paper, we only consider spectral clustering methods
using Rcut and Ncut as objective functions. We will prove the
equivalence between spectral clustering under some conditions
and non-negative matrix factorization with proper constraints.
Our result is different from that in [19], where the authors proved
that spectral clustering with Ncut objective function is equivalent
to the symmetrical NMF which factorizes the symmetrical pair-
wise similarity matrix as a symmetrical product (i.e., product of a
non-negative matrix with its transpose). Our result is also different
from that of [20] where the authors consider the non-negative
Laplacian embedding (which is equivalent to Rcut spectral cluster-
ing), which is also to factorize a symmetrical non-negative matrix
into a symmetrical product. In the present work, we consider the
data matrix itself. Under proper conditions, we prove that a
relaxed spectral clustering algorithm with Rcut objective function
is equivalent to non-negative factorization of the data matrix into
a product of a non-negative matrix with orthogonal columns and
another non-negative matrix. For the spectral clustering with Ncut
objective function, it is proved to be equivalent to the similar
factorization of the normalized data matrix. So the non-negative
matrix factorization framework unifies the spectral clustering
algorithms using Rcut and Ncut as objective functions.

This non-negative matrix factorization framework provides an
insight into connections between spectral clustering and matrix
factorization, under this framework, spectral clustering algorithms
can benefit from NMF solving techniques. For example, additional
constraints can conveniently be incorporated into the framework
to derive new spectral clustering algorithms such as non-negative
sparse spectral clustering.

2. Spectral clustering

We start with a brief introduction of spectral clustering.
Suppose we are given n data points x1; x2;…; xn, each is of
dimension p, i.e., xi∈R

p, let X ¼ ðx1; x2;…; xnÞ denotes the data
matrix of p� n. From the data points, we can construct a similarity
graph G¼ ðV ; EÞ, where the node set is V ¼ fx1; x2;…; xng, and
sometimes we also say that the node set is V ¼ f1;2;…;ng without
inducing confusion, E is the edge set. In addition, suppose an n� n
matrix W of pairwise similarities (weights) among these n points
is also available. The pairwise similarity weights can be computed
from the data points. There are some typical methods to construct
the similarity graph and compute the similarities between data
points, for example, the ϵ�neighborhood graphs, k-nearest neigh-
bor graphs, and fully connected graphs with Gaussian similarity
function [1,2,5]. The similarity matrix can also be independent of
the node contents and specified in advance as side information
[22]. In this paper, without loss of generality, we assume the
pairwise similarity being nonnegative, i.e., wij≥0, and the similar-
ity graph is undirected and symmetric, this means wij ¼wji.
Specifically, we consider the similarity matrix based on the inner
product, i.e., W ¼ XTX.

2.1. Graph Laplacian

For a similarity graph G¼ ðV ; EÞ with weight matrix W, the
degree di of node i is

di ¼∑
j
wij ð1Þ

The degree matrix D is defined as the diagonal matrix with the
degrees d1; d2;…;dn on its diagonal, i.e., D¼ diagðd1; d2;…; dnÞ. The

unnormalized graph Laplacian matrix is defined as

L¼D�W : ð2Þ
It can be proved that L is symmetric and semi-positive definite,
and for any vector x∈Rn [1]

xTLx¼ 1
2

∑
n

i;j ¼ 1
ðxi�xjÞ2wij: ð3Þ

The symmetric normalized graph Laplacian matrix Lsym is
defined as

Lsym ¼D�1=2LD�1=2 ¼ I�D�1=2WD�1=2 ð4Þ
where I is the identity matrix. Similarly

xTLsymx¼ 1
2

∑
n

i;j ¼ 1

xiffiffiffiffi
di

p � xjffiffiffiffi
dj

q
0
B@

1
CA

2

wij: ð5Þ

2.2. Graph cut

The spectral clustering of data points can be interpreted by the
partitioning of the similarity graph into several non-overlapping
parts and the problem can be solved by the graph cut approaches.
Graph cut algorithms divide a graph into groups such that edges
between different groups have low weights and edges within each
group have high weights. This can be formulated as a minimiza-
tion problem of an appropriate graph cut objective function. The
first attempt is to directly minimize the cut sðA;BÞ, between two
partitions A and B, where the cut sðA;BÞ is defined as

sðA;BÞ ¼ ∑
i∈A

∑
j∈B

wij: ð6Þ

However, this mincut algorithm is likely to divide out small
subgraphs, making the partition severely unbalanced. The ratio
cut (Rcut) Jrc is one of such objective functions proposed to handle
this problem [21]

Jrc ¼
sðA;BÞ
jAj þ sðA;BÞ

jBj ð7Þ

where jAj means the cardinality of A. The graph cut problem based
on Rcut is solved by minimizing Jrc with respect to A and B. Shi and
Malik [5] proposed another objective function: the normalized cut
(Ncut) Jnc:

Jnc ¼
sðA;BÞ
dðAÞ þ sðA;BÞ

dðBÞ ð8Þ

where dðAÞ ¼∑i∈Adi is the sum of node degrees of A.
Chan et al. [4] generalized the two-way ratio cut of (7) to multi-

way ratio cut where the nodes of graph G are divided into K
disjoint groups Cp by minimizing the following multi-way ratio cut
objective function:

Jrc ¼ ∑
1≤poq≤K

sðCp;CqÞ
jCpj

þ sðCp;CqÞ
jCqj

� �
ð9Þ

Let hl be the indicator vector for cluster Cl, i.e., hlðiÞ ¼ 1 if xi∈Cl,
otherwise hlðiÞ ¼ 0, then jClj ¼ hTl hl. It is easy to verify that

Jrc ¼ ∑
K

l ¼ 1

sðCl;ClÞ
jClj

ð10Þ

where sðCl;ClÞ is the cut between Cl and its complement Cl ¼ V�Cl.
sðCl;ClÞ can be expressed as

sðCl;ClÞ ¼ hTl ðD�WÞhl ð11Þ
If we define the n� K cluster indicator matrix H as

H¼ h1

∥h1∥
;
h2

∥h2∥
;…;

hK
∥hK∥

� �
ð12Þ
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