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a b s t r a c t

This paper presents a new loss function for neural network classification, inspired by the recently
proposed similarity measure called Correntropy. We show that this function essentially behaves like the
conventional square loss for samples that are well within the decision boundary and have small errors,
and L0 or counting norm for samples that are outliers or are difficult to classify. Depending on the value
of the kernel size parameter, the proposed loss function moves smoothly from convex to non-convex and
becomes a close approximation to the misclassification loss (ideal 0–1 loss). We show that the
discriminant function obtained by optimizing the proposed loss function in the neighborhood of the
ideal 0–1 loss function to train a neural network is immune to overfitting, more robust to outliers, and
has consistent and better generalization performance as compared to other commonly used loss
functions, even after prolonged training. The results also show that it is a close competitor to the
SVM. Since the proposed method is compatible with simple gradient based online learning, it is
a practical way of improving the performance of neural network classifiers.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Classification aims at assigning class labels to data using an
‘optimal’ decision rule that is learnt using a set of pre-labeled
training samples. This ‘optimal’ decision rule or discriminant
function f is learnt by minimizing the empirical risk, which is a
sample average of a loss function. The loss (function of the
prediction f ðxÞ, and the true label y) is essentially the price we
pay for predicting the label to be f ðxÞ, instead of y. This procedure
for learning the discriminant function is called the Empirical Risk
Minimization, and is a widely used principle for classification and
statistical learning [1,2].

The most natural loss function for classification is the mis-
classification error rate (or the 0–1 loss)

l0�1ðf ðxÞ; yÞ ¼ J ð�yf ðxÞÞþ J0; ð1Þ
where ð:Þþ denotes the positive part and J :J0 denotes the L0 norm.
This essentially is a count of the number of incorrect classifications
made by the decision rule f. Therefore, the 0–1 loss function
directly relates to the probability of misclassification. Optimization
of the risk based on such a loss function, however, is computa-
tionally intractable due to its non-continuity and non-convexity
[1,2]. Therefore, a surrogate loss function is applied to many

classification procedures. For example, well known loss functions
for training the weights of a neural network or a radial basis
function (RBF) network are the squared loss, ðy�f ðxÞÞ2, or
ð1�yf ðxÞÞ2, and the logistic loss, log ð1þ e�yf ðxÞÞ. The Support
Vector Machine (SVM) [3,4] uses the hinge loss, ½1�yf ðxÞ�þ.

Within the statistical learning community, convex surrogates of
the 0–1 misclassification loss are highly preferred because of the
virtues that convexity brings – unique optima, efficient optimiza-
tion using convex optimization tools and amenability to theore-
tical analysis of error bounds [5]. However, convex functions are
still poor approximations to the 0–1 loss function. They tend to be
boundless and offer poor robustness to outliers [2]. Another
important limitation is that the complexities of convex optimiza-
tion algorithms grow very fast with more data [6]. Some non-
convex loss functions have been proposed recently with the aim of
addressing these issues [7,8].

There is a large class of problems where optimization cannot be
done using convex programming techniques. For example, training
of deep networks for large scale AI problems primarily rely on
online, gradient-based methods [9,10]. Such neural network based
learning machines can benefit from non-convex loss functions, as
they can potentially offer better scalability, robustness and gen-
eralization performance. Although non-convex optimization and
loss functions do not offer many theoretical guarantees, the
empirical evidence that they work better in engineering applica-
tions is becoming overwhelming [6].

A loss function for classification that is inspired by the statistical
measure called Correntropy [11] was proposed in [12]. Correntropy
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between two random variables is a generalized correlation function
or a robust measure of statistical similarity, which makes use of
second and higher order statistics. It has been successfully applied
to problems like robust regression [13], adaptive filtering [14–17],
pitch detection in speech [18,19], MACE (Minimum Average Corre-
lation Energy) filtering for object recognition [20], etc. In a classi-
fication setting, maximizing the similarity between the prediction
f ðxÞ and the target y in the Correntropy sense, effectively induces a
non-convex, smooth loss function (which we call C-loss) that can be
used to train a classifier using an online gradient based technique.

This paper extends our earlier work in [12] and further char-
acterizes the C-loss function for classification. We examine the
performance of a single hidden layer perceptron trained with the
C-loss function (using backpropagation) over different system para-
meters such as training epochs and network size. We obtain better
generalization results on several synthetic and real world datasets,
when compared to the traditional squared loss function.

Furthermore, we demonstrate the performance of the C-loss
function while training RBF networks as well. We obtain superior
results using the C-loss function when compared to the logistic
loss function, while training an RBF classifier.

We also compare the performance of the proposed loss func-
tion with SVMs, that use the hinge loss function.

Conventional neural network based classifiers suffer from the
problem of overfitting due to overtraining, which often causes
poor generalization. In all the abovementioned experiments, we
show that classifiers trained using the proposed C-loss function
are more robust to overfitting even on prolonged training, and are
able to maintain consistent generalization performance. The pro-
posed online method of training classifiers using the C-loss
function has the overall practical appeal that it offers more
consistent and better generalization performance at no additional
computational cost.

The next section formalizes the pattern classification problem
from the point of view of statistical learning. Section 3 introduces
the C-loss function, along with some of its properties. In Section 4
we discuss how the C-loss function can be used to train neural
network based classifiers. Section 5 presents our experimental
results. We compare the performance of the C-loss function to the
square loss (on MLPs), the logistic loss (on RBF networks), and
SVMs on several real world datasets obtained from UCI Machine
Learning Repository [21], using different neural network architec-
tures, and several different system parameters. In Sections 6 and 7
we present some important discussions and insights and draw
conclusions.

2. Statistical theory of classification

2.1. Loss functions and risk

Suppose we are given a training set of observations Dn ¼
fðxi; yiÞ; i¼ 1;2;…;ng, assumed to be i.i.d. realizations of a random
pair ðX;YÞ. Here, XAX is the input vector and YAf�1;1g is the
class label (we consider a binary classification problem for now).
The goal of classification is to select a function f from a class of
functions F , such that the sign of f ðXÞ is an accurate prediction of Y
under an unknown joint distribution PðX;YÞ. In other words, we
want to select f AF that minimizes the risk R(f) given by

Rðf Þ ¼ E½l0�1ðYf ðXÞÞ� ¼ PðYasignðf ðXÞÞÞ: ð2Þ

The product yf ðxÞ is called the margin (denoted by α) and can be
treated as a measure of correctness of the decision for the sample x.
Given a sample set Dn of realizations, it is natural to consider the

empirical risk, or the sample average of the 0–1 loss

R̂ fð Þ ¼ 1
n

∑
n

i ¼ 1
l0�1 yif xið Þ� �

: ð3Þ

Optimization of the empirical risk as above, however, is computa-
tionally intractable, primarily because of the discontinuity of the 0–
1 loss function. The optimization procedure therefore involves
choosing a surrogate ϕðαÞ ¼ ϕðyf ðxÞÞ as the loss function. The result
is the minimization of the ϕ�risk and empirical ϕ�risk defined by
the following:

Rϕðf Þ ¼ E½ϕðYf ðXÞÞ� ð4Þ

R̂ϕ fð Þ ¼ 1
n

∑
n

i ¼ 1
ϕ yif xið Þ� �

: ð5Þ

Fig. 1 shows three commonly used surrogate loss functions –

the hinge loss used in SVMs, the square loss and the logistic loss
used in training neural networks and RBF networks.

In addition to making the optimization of the risk tractable,
choosing a surrogate loss function has another motivation. Mini-
mizing the sample average of an appropriately well behaved loss
function may have a regularizing effect [22].

2.2. Bayes' Optimal decision rule

Let pðxÞ ¼ PðY ¼ 1jX¼ xÞ be the conditional probability of the
positive class given X¼ x. Then, the decision-theoretic optimal
classification rule with the smallest generalization error is
sign½pðxÞ�1=2�. This is called the Bayes' optimal rule. The risk
associated with the Bayes' optimal rule is called the Bayes' optimal
risk Rn ¼ Rðf nÞ.

2.3. Fisher consistency

Definition 1. A margin-based loss function ϕðyf ðxÞÞ is said to be
Fisher consistent or ‘classification calibrated’ if the population
minimizer fn of the expected risk E½ϕðYf ðXÞÞ� has the same sign as
the Bayes' optimal decision rule sign½pðxÞ�1=2�.

Fisher consistency simply provides the reassurance that opti-
mizing a surrogate loss does not ultimately hinder the search for
a discriminant function that achieves the Bayes' optimal risk. Lin
[23] states a theorem that can be used to easily check if a given
function is Fisher consistent.

Theorem 1. If V is a function satisfying the following two
assumptions:
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Fig. 1. The hinge and square loss functions, plotted along with the 0–1 loss.
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