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a b s t r a c t

Most manifold learning techniques are used to transform high-dimensional data sets into low-
dimensional space. In the use of such techniques, after unseen data samples are added to the data set,
retraining is usually necessary. However, retraining is a time-consuming process and no guarantee of the
transformation into the exactly same coordinates, thus presenting a barrier to the application of manifold
learning as a preprocessing step in predictive modeling. To solve this problem, learning a mapping from
high-dimensional representations to low-dimensional coordinates is proposed via structured support
vector machine. After training a mapping, low-dimensional representations of unobserved data samples
can be easily predicted. Experiments on several datasets show that the proposed method outperforms
the existing out-of-sample extension methods.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many examples of real-world high-dimensional data, such as
images, are confined within a region of effective lower dimen-
sional space, lying on a nonlinear sub-manifold embedded in some
high-dimensional space. Manifold learning, the purpose of which
is to find effective low-dimensional coordinates from high-
dimensional data, has been intensively studied and applied to a
variety of problems, such as computer vision, bioinformatics,
econometrics, and signal processing [6,7,10,26].

Manifold learning is a part of dimensionality reduction, speci-
fically nonlinear dimensionality reduction, with nonlinear meth-
ods including locally linear embedding (LLE) [33], Hessian LLE [5],
local tangent space alignment (LTSA) [39], Kernel principal com-
ponent analysis (PCA) [34], Isomap [35], autoencoder [14], self-
organizing map (SOM) [19], maximum variance unfolding (MVU)
[38] and so on. These nonlinear methods have some advantages
over linear methods such as PCA [15] and linear discriminant
analysis [9]. For instance, nonlinear methods can effectively
capture nonlinear structures embedded in high-dimensional
space. However, most such methods are transductive, which
means retraining is necessary when unseen data samples are
added after manifold learning techniques are applied to transform
a high-dimensional data set into low-dimensional space.

This transductive property is the main limitation in the use of
manifold learning as a preprocessing tool prior to the construction

of predictive models in low-dimensional space. Dimensionality
reduction techniques such as PCA are often used as a preproces-
sing step to avoid problems associated with dimensionality, reduce
training and testing time, and improve the performance of the
resulting model by removing redundant features. Here, unseen
data samples are directly transformed into low-dimensional space
to produce inputs of unseen data for the predictive model trained
in the low-dimensional space. However, manifold learning meth-
ods generally do not yield a mapping from the original data (input
space X) to the reduced low-dimensional data (output space Y).
Instead, they should calculate low-dimensional coordinates by
retraining training data with unseen data, whereas PCA and Kernel
PCA compute low-dimensional representations using PC loading.
In this case, mismatches between transformation results may
occur, rendering the trained model useless. In addition, retraining
requires a testing step with heavy time-complexity of OðN2Þ to
compute relations between data points and OðN3Þ to solve the
generalized eigenvalue problem for many manifold learning algo-
rithms such as LLE and LTSA. Meanwhile several methods for out-
of-sample extension have been proposed such as locally preser-
ving projections (LPP) [13], neighborhood preserving embedding
(NPE), and learning a eigenfunction [1]. However, because of the
inherent linearity assumption of these methods, except autoenco-
der and SOM which train a mapping during the reduction process,
they can not show good performance on nonlinear data. Besides,
these methods also cannot provide a general framework to learn a
mapping for any manifold learning.

In this paper, we propose a general framework for out-of-
sample extension of any manifold learning. When given x∈X and
its corresponding reduced low dimensional data y∈Y using some
manifold learning, the proposed method learns a mapping from
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X to Y. For the learning task, we adapt the structured support
vector machine (SVM) [2,23,36]. After training a mapping, obtain-
ing low-dimensional coordinates well matched with those of
training data becomes easy. The learning task can be viewed as a
prediction of multivariate, continuous and unbounded output vari-
ables. Therefore, both of the conventional classification methods with
discrete classes and regression methods for a univariate variable have
limitations when it comes to solving this learning task.

The remainder of the paper is organized as follows: in Section
2, we briefly review the existing manifold learning methods and
discuss their transductive property as a main limitation in their
applications. The proposed inductive manifold learning method is
presented in Section 3. In Section 4, we demonstrate the effec-
tiveness of the proposed method using a synthetic and face data
set, and apply the method to pedestrian and digit classification
tasks. Finally, we conclude the paper in Section 5.

2. Transductive property of manifold learning

Dimensionality reduction is one of the main applications of
manifold learning, also known as nonlinear dimensionality reduc-
tion. Nonlinear methods can be broadly classified into two groups:
those that provide a mapping function and those that simply provide
a representation. Autoencoder, SOM, and kernel PCA are examples of
those methods that provide a mapping function, whereas most
manifold learning techniques, such as LLE [33], Hessian LLE [5], LTSA
[39], Isomap [35], MVU [38], diffusion map [21] and so on, only
provide low-dimensional coordinates without mapping.

Dimensionality reduction is based on solving different optimi-
zation problems. In general, each method determines how to
obtain proximity data, that is, distance measurements, and then
establishes constraints and properties among data points in high-
dimensional space which are also maintained in low-dimensional
space. Their transductive property comes from the calculation of
proximity data, because their distance relationships are changed
when unobserved data points are added into the data set. Isomap,
LLE, and LTSA are representative methods of transductive manifold
learning and are briefly explained, including the underlying
concepts and limitations as follows.

Instead of Euclidian distances, Isomap [35] calculates geodesic
distances on a weighted graph. The multidimensional scaling
method suffers from the fact that it does not take into account
distribution [20], while Isomap captures relationships between
data lying on or near a curved manifold, such as in the Swiss roll.
In Isomap, geodesic distances between the data points xi are
computed by constructing neighborhood graph G in which every
data point xi is connected with its k nearest neighbors xij in the
data set X. The low-dimensional representation yi of the data point
xi in the low-dimensional space Y is computed by applying
multidimensional scaling on the resulting distance matrix. Isomap
must retrain data with new samples because the neighborhood
graph G for computing geodesic distances between data points is
updated after the addition of new samples.

LLE [5] is a nonlinear dimensionality reduction technique to
preserve local relationships in a given data set, reducing sensitivity
to short-circuiting. Consideration of local properties allows us to
determine the embedding manifold of nonconvex structures. LLE
describes the local relation around a D-dimensional data point
xi∈D∈RD, i¼ 1;…;N on some manifold as a linear combination of
its k nearest neighbors xij∈D weighted by some wij which is
obtained by minimizing reconstruction error, ΦðWÞ ¼∑i∥xi�
∑jwijxij∥2. Low-dimensional representations are calculated by
minimizing reconstruction error with the same weight wij calcu-
lated in the high-dimensional space, ΦðYÞ ¼∑i∥yi� ∑jwijyij∥2 ¼
YMYT , where the element of M is mij ¼ δij� wij�wji þ∑kwkiwkj.

In LLE, low-dimensional representations are computed based on
relationships among data samples; hence, all of relationships
among data samples must be recalculated after the addition of
unseen data samples to the data set.

LTSA [39] is a technique that describes local properties of high-
dimensional data using the local tangent space of each data point.
If local linearity of the manifold is assumed, there exists a linear
mapping from a high-dimensional data point to its local tangent
space and a linear mapping from the corresponding low-
dimensional data point to the same local tangent space. LTSA
simultaneously searches for the coordinates of low-dimensional
data representations and linear mappings of low-dimensional data
points to the local tangent space of high-dimensional data. Similar
to LLE, LTSA calculates low-dimensional coordinates by solving a
quadratic form of the optimization problem. Hence, LTSA must
recalculate matrix M when unobserved samples are added to the
data set, which means that LTSA is transductive.

As described above, most existing manifold learning methods
depend on proximity expressions of training data without mapping,
which makes a barrier to out-of-sample extension for them. More-
over, it is not a trivial matter to extend a variety of transductive
proximity expressions into inductive ones. The better approach is
therefore to directly learn a mapping from original space to its
manifolds as a general framework for inductive manifold learning.

3. Inductive manifold learning

In this section, we describe the steps involved in learning a
mapping for inductive manifold learning. Fig. 1 sketches the whole
framework, which consists of learning a mapping and applying the
learned mapping as a preprocessing step in predictive modelling
such as classification or regression.

3.1. Modelling a mapping as structured SVM

Given a set of input points x∈X⊂RD and their corresponding
manifold points y∈Y⊂Rd, we want to learn a mapping f : X↦Y
with which we can predict dimensionality-reduced points on the
manifold for unseen input x without retraining. We consider the
case where the output space Y⊂Rd is continuous, multivariate, and
low dimensional manifold constructed by one of the plenty of
manifold learning methods. We learn this mapping in the struc-
tured SVM framework [36] as

f ðx;wÞ ¼ argmax
y∈Y

sðx; y;wÞ; ð1Þ

where sðx; y;wÞ is a discriminant function over input–output pairs
that gives a large value to pairs ðx; yÞ that are well matched and w
represents a parameter vector. After learning the function s, we

Fig. 1. A flowchart of the proposed inductive manifold learning framework to be
used as a preprocessing step in a classification task.
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