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a b s t r a c t

Non-linear dimensionality reduction techniques are affected by two critical aspects: (i) the design of the
adjacency graphs, and (ii) the embedding of new test data—the out-of-sample problem. For the first
aspect, the proposed solutions, in general, were heuristically driven. For the second aspect, the difficulty
resides in finding an accurate mapping that transfers unseen data samples into an existing manifold. Past
works addressing these two aspects were heavily parametric in the sense that the optimal performance
is only achieved for a suitable parameter choice that should be known in advance.

In this paper, we demonstrate that the sparse representation theory not only serves for automatic graph
construction as shown in recent works, but also represents an accurate alternative for out-of-sample
embedding. Considering for a case study the Laplacian Eigenmaps, we applied our method to the face
recognition problem. To evaluate the effectiveness of the proposed out-of-sample embedding, experiments are
conducted using the K-nearest neighbor (KNN) and Kernel Support Vector Machines (KSVM) classifiers on six
public face datasets. The experimental results show that the proposed model is able to achieve high
categorization effectiveness as well as high consistency with non-linear embeddings/manifolds obtained in
batch modes.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Manifold learning refers to the problem of recovering the
structure of a manifold from a set of unordered sample data.
Manifold learning is often equated with dimensionality reduction,
where the goal is to find an embedding or ‘unrolling’ of the
manifold into a lower dimensional space such as certain relation-
ships between samples are preserved. Such embeddings are
typically used for visualization. In recent years, a new family of
non-linear dimensionality reduction techniques for manifold
learning has emerged. The most known are Kernel Principal
Component Analysis (KPCA) [1], Locally Linear Embedding (LLE)
[2,3], Isomap [4], Supervised Isomap [5], Laplacian Eigenmaps (LE)
[6,7]. This family of non-linear embedding techniques appeared as
an alternative to their linear counterparts which suffer severe
limitation when dealing with real-world data: (i) they assume that
the data lie in an Euclidean space and (ii) they may fail to get a
faithful representation of data distribution when the number of
samples is too small. On the other hand, the non-linear

dimensionality techniques are able to discover the intrinsic data
structure by exploiting the local topology. In general, they attempt
to optimally preserve the local geometry around each data sample
while using the rest of the samples to preserve the global structure
of the data.

The non-linear methods such as Locally Linear Embedding (LLE),
Laplacian Eigenmaps, Isomap, Hessian LLE (hLLE) [8] focus on preser-
ving the local structure of data. LLE formulates the manifold learning
problem as a neighborhood-preserving embedding, which learns
the global structure by exploiting the local linear reconstructions.
It estimates the reconstruction coefficients by minimizing the recon-
struction error of the set of all local neighborhoods in the dataset.
Isomap extends the classical Multidimensional Scaling (MDS) [9] by
computing the pairwise distances in the geodesic space of the
manifold. Essentially, Isomap attempts to preserve geodesic distances
when data are embedded in the new low dimensional space. Based on
the spectral decomposition of the Laplacian of a graph, Laplacian
Eigenmaps actually try to find Laplacian eigenfunction on the mani-
fold. Maximum Variance Unfolding (MVU) [10] is a global algorithm
for non-linear dimensionality reduction, in which all the data pairs,
nearby and far, are considered. MVU attempts to ‘unfold’ a dataset by
pulling the input patterns as far apart as possible subject to constraints
that distances and angles between neighboring points are strictly
preserved.
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The main issues of the non-linear methods are (1) the quality of
embedded space is very sensitive to the choice of free parameters
used in the data graph construction [11,12], and (2) they do not
provide an explicit mapping function between low and high
dimensional spaces [13,14]. Such function is essential for ensuring
the continuity of low dimensional representation and projecting
data between spaces. Many existing manifold learning techniques
do not naturally contain an out-of-sample extension, so research
has been undertaken to find ways of extending manifold learning
techniques to handle new samples. The out-of-sample extension
problem has not received much attention by researchers since it
was considered a pure non-linear regression problem [15,16].
Therefore, the out-of-sample problem has been addressed quite
satisfactorily by applying Radial Basis Function networks in order
to approximate the optimal mapping function [15]. However, the
quality of Radial Basis Function networks relies on the careful
selection of a few parameters which are chosen empirically
[17,18]. In [19], the author presented an algorithm, Locally
Smooth Manifold Learning, for learning the structure of a manifold
in terms of tangent vectors. Rather than pose manifold learning
as the problem of recovering an embedding, they posed the
problem in terms of learning a warping function for traversing
the manifold using the learned tangent vectors. Smoothness
assumptions on this warp allowed the method generalize to
unseen data.

In [20], the authors cast MDS, ISOMAP, LLE, and LE in a common
framework, in which these methods are seen as learning eigen-
functions of a kernel. The authors try to generalize the dimension-
ality reduction results for the unseen data samples. In [21], the
author proposes a method based on probabilistic mixtures of
factor analyzers to (1) model the density of images sampled from
such manifolds and (2) recover global parameterizations of the
manifold. A globally non-linear probabilistic two-way mapping
between coordinates on the manifold and images is estimated by
combining several, locally valid, linear mappings. In [22], the
authors propose a novel solution which involves approximating
the kernel eigenfunction using Gaussian basis functions. They
also show how the width of the Gaussian can be tuned to
achieve extrapolation. Their method was applied to Maximum
Variance Unfolding (MVU) method [10]. In [23], the proposed
method works by learning the transformation that maps
the neighborhood of the unlearnt sample from the high to the
low-dimensional space. This transformation is then applied to the
new sample to obtain an estimation of its low-dimensional
embedding.

In this paper, we address the out-of-sample extension problem.We
adopt the sparse representation approach as an optimal solution to the
‘out-of-sample’ problem. The sparse representation was recently used
as an effective alternative to the parametric construction of the
adjacency graph [12]. Without any loss of generality, we chose the
Laplacian Eigenmaps as one of the non-linear dimensionality reduc-
tion techniques to test our method. We present a generalized out-of-
sample extension solution using the recent findings in sparse coding
theory. Unlike existing approaches we do not require information to
be retained from the learning process, such as the pairwise distance
matrix or the resultant eigenvectors, we simply learn the mapping
from the original high-dimensional data and its low-dimensional
counterpart. Although the proposed method integrates the locality
preserving principle in its derivation, it is intended to be independent
of any specific manifold learning algorithm.

The paper is structured as follows. In Section 2, we briefly
review the Laplacian Eigenmaps as well as the L1 graph construc-
tion. In Section 3, we introduce our proposed approach for the out-
of-sample problem based on sparse representation. Section 4
contains the experimental results performed on six face datasets.
We evaluate the performance of the proposed out-of-sample

method for the face recognition problem. Finally, in Section 5 we
present our conclusions.

2. Background

2.1. Review of Laplacian Eigenmaps

Laplacian Eigenmaps is a recent non-linear dimensionality
reduction technique that aims to preserve the local structure of
data [6]. Using the notion of the Laplacian of a graph, this non-
supervised algorithm computes a low-dimensional representation
of the dataset by optimally preserving local neighborhood infor-
mation in a certain sense. We assume that we have a set of N
samples xif gNi ¼ 1⊂R

D. The original LE starts with building a graph
on the data samples. In this graph, the nodes represent the data
samples and the edges quantify the similarity among pairs of
samples. There are several ways for setting the edges of the graph.
For instance, the most common strategy is to use a K-nearest-
neighbor or ϵ�ball graph, or a full mesh (all pairs are connected).
Once the edges are set, one can weigh each edge xi∼xj by a
symmetric affinity function Wij ¼ Kðxi;xjÞ, typically Gaussian:

Wij ¼ exp −
‖xi−xj‖2

β

 !
ð1Þ

where β is a suitable positive scalar. It is usually set to the average
of squared distances between all pairs.

LE seeks latent points yi
� �N

i ¼ 1⊂R
L that minimize 1

2∑i;j‖yi−yj‖2Wij,
which discourages placing far apart latent points that correspond to
similar observed points. If W≡Wij denotes the symmetric affinity
matrix and D is the diagonal weight matrix, whose entries are
column (or row, since W is symmetric) sums of W, then the
Laplacian matrix is given L¼D−W. The objective function can also
be written as

1
2
∑
i;j
‖yi−yj‖2Wij ¼ trðZTLZÞ ð2Þ

where ZT ¼ Y¼ ½y1;…; yN� is the L� N matrix of embedded data and
trð � Þ denotes the trace of a matrix. The ith row of the matrix Z
provides the vector yi—the embedding coordinates of the sample xi.

The matrix Z (or equivalently YÞ is the solution of the optimiza-
tion problem:

min
Z

trðZTLZÞ s:t: ZTDZ¼ I; ZTL1¼ 0 ð3Þ

where I is the identity matrix and 1¼ ð1;…;1ÞT . The first con-
straint eliminates the trivial solution Z¼ 0 (by setting an arbitrary
scale) and the second constraint eliminates the trivial solution 1
(all samples are mapped to the same point). Standard methods
show that the embedding matrix is provided by the matrix of
eigenvectors corresponding to the smallest eigenvalues of the
generalized eigenvector problem:

Lz¼ λDz ð4Þ

Let the column vectors z0;…; zN−1 be the solutions of (4), ordered
according to their eigenvalues, λ0 ¼ 0≤λ1 ≤⋯≤λN−1. The eigenvector
corresponding to eigenvalue 0 is left out and only the next
eigenvectors for embedding are used. The embedding of the original
samples is given by the row vectors of the matrix Z, that is,
Y¼ ½y1; y2;…; yN� ¼ ZT .

xi⟶yi ¼ ðz1ðiÞ;…; zLðiÞÞT ð5Þ

where LoN is the dimension of the new space.
From Eq. (4), we can observe that the dimensionality of the

subspace obtained by LE is limited by the number of samples N.
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