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a b s t r a c t

In this work a general framework for non-rigid 3D medical image registration is presented. It relies on
two pattern recognition techniques: kernel regression and fuzzy c-means clustering. The paper provides
theoretic explanation, details the framework, and illustrates its application to implement three registration
algorithms for CT/MR volumes as well as single 2D slices. The first two algorithms are landmark-based
approaches, while the third one is an area-based technique. The last approach is based on iterative
hierarchical volume subdivision, and maximization of mutual information. Moreover, a high performance
Nvidia CUDA based implementation of the algorithm is presented.

The framework and its applications were evaluated with a number of tests, which show that the
proposed approaches achieve valuable results when compared with state-of-the-art techniques.

Additional assessment was taken by expert radiologists, providing performance feedback from the
final user perspective.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most widely accepted methods of gathering knowl-
edge about tissues, organs and cells, is to integrate information
integration coming from volumes/images of such objects that have
been acquired with different modalities, different acquisition techni-
ques, and at different times. Volume registration is a mandatory
task to achieve information fusion. Registration lets the two
volumes to be transformed geometrically so that the best possible
spatial correspondence with respect to each other is obtained.

Image and volume registration techniques span a broad class of
methods and taxonomies according to either the features used
to perform registration or the nature of transformation. Several
surveys on the subject are present in the literature [1–5] and this
research field is very active as it is reported in [6].

With regard to the features, registration methods can be
landmark-based or area-based. Landmark-based approaches rely
on the information provided by some corresponding features in
the two images, such as points, lines, regions, etc. Area-based
techniques use the whole image content to estimate the registra-
tion transformation by optimizing some similarity metric.
Although several similarity metrics have been proposed in litera-
ture, Mutual Information (MI) and its normalized version (Normal-
ized Mutual Information—NMI) has proven to be one of the most

effective measures, especially for multi-modality registration tasks
[7–10], since it does not assume any functional relationship
between the intensity values of the images, taking into account
only their statistical correspondence.

With regard to the nature of transformation, many models exist
in literature. The simplest ones use global or local mapping
by means of rigid, affine, and projective transformations. Other
approaches are able to deal with local deformations and use radial
basis functions such as thin-plate spline [11] or Wendland's
functions [12,13]. A more complex approach is to use parameter-
free deformation functions, by considering the volume as a tensile
material [14] or a viscous fluid [15] that is deformed by external
and internal forces subject to constraints. In this approach,
registration is achieved by the iterative minimization of an energy
functional.

Another approach called block matching [16], finds local
correspondences and then derives the global rigid transformation
that best explains them. ANIMAL [17], realizes the registration
using a two step registration (a linear and a non-linear part)
relying on geometrically invariant spatial features. Polyaffine
framework [18] parameterizes deformations with a finite number
of rigid or affine components. Lastly, in MIRT [19] a gradient
descent method is used hierarchically to iteratively determine
optimal B-spline parameters for the transformation.

Using a global method is a practicable choice only when using
simple transformation models, where just few parameters are
required. When using curved deformations the number of para-
meters is large, and a direct optimization is not possible due to
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large dimensionality of the search space and the presence of many
local optima. A possible solution is to decompose the image
domain and operate many local sub-image registrations using
simple models. The final global transformation can be recovered
by composing local ones, thus obtaining a unique continuous and
smooth complex deformation [20,21]. Such idea, and a variety of
methods to recover a mapping function using points correspon-
dences have been extensively investigated in [22] and [23].

Recently we proposed some 2D registration systems leveraging
onto these concepts [24–26]. However, such image-based approaches
were lacking a formal theoretical background. The present work
deepens the formal aspects. Additionally, the method proposed in
this paper unifies the three approaches to a unique 3D registration
framework that relies on using kernel regression and fuzzy
c-means clustering for recovering the required volume transfor-
mation parameters. We called such framework 3D Fuzzy Kernel
Regression. Three applications are presented as different instances
of the framework where increasing complexity transformations
are addressed. The first two are a simple and an improved
landmark based technique (SLB and ILB) while the third one is
an automatic area based approach (AAB) that addresses several hot
problems in the field of registration: it does not require corre-
spondences, achieves a per voxel transformation, and is inherently
parallel. The presented techniques are compared to each other to
prove the generality of the framework, while the AAB algorithm is
compared with MIRT, and an overall performance review is
provided by a team of radiologists.

The paper is arranged as follows: in Section 2 theoretical
background related to kernel regression and fuzzy c-means is
reported. The three different framework implementations are
illustrated in Section 3, while Section 4 reports the details about
the implementation of the framework on the Compute Unified
Device Architecture (CUDA) for increasing performance using
NVidia GPUs to make some of the calculations. In Section 5 the
proposed registration methods are tested to evaluate their perfor-
mances from both qualitative and quantitative perspectives.
Finally, in Section 6 final considerations and future works are
explained.

2. Theoretical framework

The proposed registration framework relies on two main
theoretical concepts: Kernel Regression and Fuzzy c-means. For this
reason, we will provide an explanation of such issues, and how
they are used together for the purpose of volume data registration
before illustrating the applications of the proposed framework.

2.1. Kernel regression

Consider a target volume T, an input volume I and a set of
known displacements tn for some given pairs of corresponding
points cTn and cIn. In what follows, boldface notation will indicate
3D vectors and/or points. The registration problem can be stated as
recovering the values for reconstructing the whole deformation
function g(x) which brings I to the best spatial correspondence
with T. In our work this was accomplished using kernel regression.
Kernel regression is a memory-based pattern recognition method,
i.e. it uses data points both in the training and in the prediction
phase. It consists in predicting the function value for given input
points by means of linear combinations of a kernel function
evaluated at the training data points. Kernels depending only on
the magnitude of the distance between their argument and the
training points, are known as homogeneous kernels or radial basis
functions. In our work we used the derivation of kernel regression
from the scheme known as the Nadaraya–Watson model [27].

Starting from the training set made by N couples /cn; tnS; i¼ 1;…;N,
the joint distribution p (x, t) can be modeled using a Parzen density
estimator

pðx; tÞ ¼ 1
N

∑
N

n ¼ 1
f ðx−cn; t−tnÞ ð1Þ

where f(x,t) is the component density function. There is an instance of
f ð�Þ centered in each sub-image. The regression function y(x), corre-
sponding to the conditional average of the target variable depending
on the input, is given by

yðtÞ ¼ E½tjx� ¼
Z þ∞

−∞
tpðtjxÞ dt¼

R
tpðx; tÞ dtR
pðx; tÞ dt ¼ ∑n

R
tf ðx−cn; t−tnÞ dt

∑m
R
f ðx−cm; t−tmÞ dt

:

ð2Þ
Assuming that the component density functions have zero

mean so that
Z þ∞

−∞
f ðx; tÞt dt¼ 0 ð3Þ

for all values of x, we can operate a variable substitution, and
we get

yðxÞ ¼ ∑ngðx−cnÞtn
∑mgðx−cmÞtm

¼∑
n
kðx; cnÞtn; ð4Þ

where the kernel function k(x, cn) is defined as

kðx; cnÞ ¼
gðx−cnÞ

∑mgðx−cmÞ
ð5Þ

and

gðxÞ ¼
Z þ∞

−∞
f ðx; tÞ dt: ð6Þ

This form is known as the Nadaraya–Watson model or kernel
regression [27], [28]. In case of localized kernel functions, it has the
property of weighting more the data points cn close to x than the
others. The kernel (5) satisfies the summation constraint

∑
N

n ¼ 1
kðx; cnÞ ¼ 1: ð7Þ

2.2. Fuzzy c-means clustering

In order to use the kernel regression model we need to choose
a suitable equivalent kernel which satisfies (7). Several functions
can be chosen for this purpose, such as Gaussians, multiquadric,
polyharmonic, Thin-plate splines [11], etc. In our framework
we introduce fuzzy membership maps as equivalent kernels.
Such functions are designed using fuzzy c-means (FCM) cluster-
ing algorithm [29]. Given a training set of feature vectors
fxi; i¼ 1;…; kg that defines a feature space Ω, FCM finds analyti-
cally the position of the cluster centroid vectors fcj; j¼ 1;…;mg in
such a space. This is accomplished by minimizing the following
functional:

Js ¼ ∑
m

j ¼ 1
∑
k

i ¼ 1
ðuijÞs dðxi; cjÞ2; 1≤so∞; ð8Þ

where d(xi,cj) is a distance function between each observation
vector xi and the cluster centroid cj, m is the number of clusters,
which should be chosen a priori, k is the number of observations,
uij is the membership degree of the sample xi belonging to the
j-th cluster and s≥1 is a parameter which defines the amount of
clustering fuzziness, i.e. the form of the membership function. For
common tasks this value ranges generally in an interval around 2.
An additional constraint is that the membership degrees should be
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