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a b s t r a c t

Clustering is a very powerful tool for automatic detection of relevant sub-groups in unlabeled data sets.
In this paper we focus on interval data: i.e., where the objects are defined as hyper-rectangles.
We propose here a new clustering algorithm for interval data, based on the learning of a Self-Organizing
Map. The major advantage of our approach is that the number of clusters to find is determined
automatically; no a priori hypothesis for the number of clusters is required. Experimental results confirm
the effectiveness of the proposed algorithm when applied to interval data.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Unsupervised classification, or clustering, is a very powerful tool
for automatic detection of relevant sub-groups (or clusters) in
unlabeled data sets, when one does not have prior knowledge about
the underlying structure of these data. Patterns in the same cluster
should be similar to each other, while patterns in different clusters
should not (internal homogeneity and external separation). Cluster-
ing plays an indispensable role for understanding various phenom-
ena described by data sets and is considered as one of the most
challenging tasks in unsupervised learning. Various approaches have
been proposed to solve the problem [35,40,41,25,24].

However, most clustering algorithms are defined to deal with
vectorial data in Rd. This kind of representation is frequently used to
analyze data from physical measurements, counts or indices, but there
are many other kinds of information that cannot be described with
vectors. This is the case of complex data described for example with a
text, a picture or a hierarchical structure. In this paper we focus on
interval data (also known as symbolic interval data). In a vectorial
space, interval data are defined by hyper-rectangles. A given data x is
thus defined as a closed and bounded interval in Rd, characterized by
two vectors, the lower bound (xl ¼ ½xl1;…; xld�) and the upper bound
(xu ¼ ½xu1;…; xud�), such that ∀j∈½1;…; d�; xlj ≤xuj. Intervals are often
used to model quantities which vary between two bounds, upper and
lower, without further assumptions on the distribution between these

bounds [3,21,2,20]. Several clustering methods are available for inter-
val variables. For example, [26] presented an iterative relocation
algorithm to partition a set of symbolic objects into classes so as to
minimize the sum of the description potential of the classes. De Souza
and de Carvalho [18] proposed partitioning clustering methods for
interval data based on city-block distances. SCLUST [50] is a partition-
ing clustering method and a symbolic extension of the well-known
Dynamical Clustering method [19]. DIV [10] is a symbolic hierarchical
monothetic divisive clustering procedure based on the extension of
the within class sum-of-squares criterion. SCLASS [48] and SPART [33]
are symbolic hierarchical monothetic divisive methods based on the
generalized Hypervolumes clustering criterion. Hardy [32] developed
a module called SHICLUST containing the symbolic extensions of four
well-known classic hierarchical clustering methods: the single linkage,
complete linkage, centroid and Ward methods. The corresponding
aggregation indices used the L1, L2, Hausdorff and De Carvalho [13]
dissimilarity measures [45,23]. The hierarchical component of Hipyr
[7] also contains extensions of the four classic hierarchical clustering
methods. Other clustering methods for interval data can be found in
[11,18,31,4,39,15].

We present here a new clustering algorithm for interval data,
based on the learning of a Self-Organizing Map (SOM) [42]. This
unsupervised learning algorithm is a popular nonlinear technique
for dimensionality reduction and data visualization, with a very
low computational cost. It can be seen as a K-means algorithm
with topological constraints, usually with a better overall cluster-
ing performance [12]. Bock [4,5] proposed a visualization of
symbolic interval data by constructing a SOM. In the SODAS
software [21], such a map is constructed in the SYKSOM module.
SYKSOM assumes a data table of n items that are described by
p interval-type variables. The n items are first clustered into a smaller
number of mini-clusters (reduction step), and these mini-clusters are
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then assigned to the vertices of a fixed, prespecified rectangular
lattice L of points in the plane such that similar clusters (in the
original data space) are represented by neighboring vertices in the
lattice L. Other papers concerning SOM algorithms for interval-
valued data can be found in the literature [28,29,47,16,22,52]. For
example, [22] uses a distance based on Hadamard product and [52]
proposes a fuzzy representation based on Gowda and Diday's
dissimilarity measure [27]. All these algorithms can be seen as vector
quantization and visualization tools for symbolic interval data, and
cannot be used directly to obtain a clustering of the data.

The proposed algorithm is a two-level clustering method for
interval data. The key idea of the two-level clustering approach based
on SOM is to combine the dimension reduction and the fast learning
capabilities of SOM in the first level to construct a new reduced space,
then to apply a clustering method in this new space to produce a final
set of clusters in the second level (see [38,49] for examples with
vectorial data). The two-level methods are known to reduce the
computational time and allow a visual interpretation of the clustering
results [8]. In particular, the use of SOM+K-means or SOM+Hierarch-
ical clustering gives better results than the use of K-means or a
Hierarchical clustering alone [8,9]. The major advantage of the new
algorithm in comparison to existing methods is that the number of
clusters to find is detected automatically, i.e., no a priori hypothesis
for the number of clusters is required. This problem, also known as
the model selection problem, is one of the most challenging in
clustering. Indeed, the existing clustering algorithms for interval data
need to have the number of clusters as a user-given parameter
[50,26,18,33], which is usually very difficult to determine a priori.

The remainder of this paper is organized as follows. Section 2
presents an adaptation of SOM allowing an automatic two-level
clustering. Section 3 describes the new algorithm for interval data.
In Section 4 we present the experimental protocol and results are
shown in Section 5. In Section 6, we compare the new algorithm
with existing methods on artificial and real datasets. Conclusions
are given in Section 7.

2. Simultaneous two-level clustering of self-organizing map

Kohonen's Self-Organizing Map (SOM) can be described as a
competitive unsupervised learning neural network [42]. When an
observation is recognized, the activation of an output cell – competi-
tion layer – inhibits the activation of other neurons and reinforces
itself. It is said that it follows the so called “Winner Takes All” rule.
Actually, neurons are specialized in the recognition of one kind of
observation. A SOM often consists of a two-dimensional map of
neurons which are connected to n inputs according to n weight
connections wj ¼ ðwj

1;…;wj
dÞ and to their neighbors with topological

links. A training set is used to organize these maps under topological
constraints of the input space. Thus, a mapping between the input
space and the network space is constructed; two close observations in
the input space would activate two close units of the SOM. An optimal
spatial organization is determined by the SOM from the input data,
and when the dimension of the input space is lower than three, both
the position of weight vectors and direct neighborhood relations
between cells can be represented visually. Thus, a visual inspection
of the map provides qualitative information about the map and the
choice of its architecture. The winner neuron updates its prototype
vector, making it more sensitive for later presentation of that type of
input. This allows different cells to be trained for different types of
data. To achieve a topological mapping, the neighbors of the winner
neuron can adjust their prototype vector towards the input vector as
well, but at a lesser degree, depending on how far away they are from
the winner. Usually a radial symmetric Gaussian neighborhood func-
tion Kij, between two neurons i and j, is used for this purpose.

The key idea of the two-level clustering approach based on SOM
is to combine the dimension reduction and the fast learning
capabilities of SOM in the first level to construct a new reduced
vector space, and to apply another clustering method in this new
space to produce a final set of clusters in the second level. Although
the two-level methods are more interesting than the traditional
approaches (in particular by reducing the computational time and by
allowing a visual interpretation of the partition result [6,38,49,43]),
the data segmentation obtained from the SOM is not optimal, since
part of the information is lost during the first stage (dimension
reduction). Moreover, this separation in two stages is not suited for a
dynamic (incremental) segmentation of data which move in time, in
spite of important needs for analysis tools for this type of data. The
S2L-SOM algorithm (Simultaneous Two-Levels-SOM, [8]) has been
proposed to overcome these problems by simultaneous performing
learning and clustering of the SOM from data information.

2.1. The S2L-SOM algorithm

In the S2L-SOM algorithm, it is proposed to associate to each
neighborhood connection a real value νij which indicates the
relevance of the connected neurons i and j. This value is representa-
tive of the data distribution between i and j, and can be viewed as the
number of data having i and j as the two best representatives
neurons. Given the organization constraint of the SOM, both closest
prototypes of each data must be connected by a topological connec-
tion. This connection “will be rewarded” by an increase of its value,
whereas all other connections from the winner neuron “are pun-
ished” by a reduction of their values. The values of ν will be used to
create sets of connected prototypes; each set not connected to the
others is representative of one cluster. Thus, at the end of the
training, a set of inter-connected prototypes will be an artificial
image of a relevant sub-group of the whole data set.

Connectionist learning is often presented as a minimization of a
cost function. In our case, it will be carried out by the minimiza-
tion of the distance between the input samples and the map
prototypes, weighted by a neighborhood function Kij. To do that,
we use a gradient algorithm [1]. The cost function to be minimized
is defined by

~RðwÞ ¼ 1
N

∑
N

k ¼ 1
∑
M

j ¼ 1
Kj;unðxðkÞÞ∥w

j−xðkÞ∥2 ð1Þ

where N represents the number of learning samples, M the
number of neurons in the map, unðxðkÞÞ is the neuron having the
closest weight vector to the input pattern xðkÞ, and Kij is a positive
symmetric kernel function: the neighborhood function [42]. The
relative importance of a neuron i compared to a neuron j is
weighted by the value of the kernel function Kij which can be
defined as

Kij ¼
1
λðtÞ � e−d

2
1ði;jÞ=λ2ðtÞ ð2Þ

where λðtÞ is the temperature function modeling the topological
neighborhood extent, defined as

λðtÞ ¼ λi
λf
λi

� �t=tmax

ð3Þ

where λi and λf are the initial and the final temperature respec-
tively. tmax is the maximum number allocated to the time (number
of iterations for the x learning sample). d1ði; jÞ is the Manhattan
distance defined between two neurons i and j on the map grid,
with coordinates (k, m) and (r, s) respectively

d1ði; jÞ ¼ ∥r−k∥þ ∥s−m∥: ð4Þ
The S2L-SOM training process is highly similar to the Competitive
Hebbian Learning (CHL) approach [46]. The difference lies in that the
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