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a b s t r a c t

Agglomerative clustering, which iteratively merges small clusters, is commonly used for clustering
because it is conceptually simple and produces a hierarchy of clusters. In this paper, we propose a novel
graph-structural agglomerative clustering algorithm, where the graph encodes local structures of data.
The idea is to define a structural descriptor of clusters on the graph and to assume that two clusters have
large affinity if their structural descriptors undergo substantial change when merging them into one
cluster. A key insight of this paper to treat a cluster as a dynamical system and its samples as states. Based
on that, Path Integral, which has been introduced in statistical mechanics and quantum mechanics, is
utilized to measure the stability of a dynamical system. It is proposed as the structural descriptor, and the
affinity between two clusters is defined as Incremental Path Integral, which can be computed in a closed-
form exact solution, with linear time complexity with respect to the maximum size of clusters. A
probabilistic justification of the algorithm based on absorbing random walk is provided. Experimental
comparison on toy data and imagery data shows that it achieves considerable improvement over the
state-of-the-art clustering algorithms.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering is a classical machine learning topic with wide
applications in diverse fields. It includes two major categories
[1,2]: partitional clustering, which determines all clusters at once,
and hierarchical clustering, which creates a hierarchy of clusters in
a bottom-up (or agglomerative) process by merging small clusters
or in a top-down (or divisive) process by dividing large clusters
into small ones. Numerous algorithms have been proposed, such
as k-means [2], spectral clustering [3–8] and affinity propagation
[9], and achieved great success.

This work stands on the success of agglomerative clustering, which
is commonly used because it is conceptually simple and produces
a hierarchy of clusters. Beginning with a large number of initial small
clusters, the agglomerative clustering algorithms iteratively select two
clusters with the largest affinity under certain measures to merge,
until some stopping condition is reached. Therefore, the affinity
measure of clusters is critically important. Linkages, e.g., single linkage,
complete linkage and average linkage [2], define the affinity based on
inter-cluster pairwise distances. Since pairwise distances do not well
capture the global structures of data, complete linkage and average
linkage fail on clustering data with manifold structures. Although

single linkage performs better in this case, it is very sensitive to noisy
distances. Examples can be found in Fig. 3. Lossy coding theory of
multivariate mixed data [10] characterizes the affinity of two clusters
with the variational coding length of coding the merged cluster
against coding the two clusters separately. It exhibits exceptional
performance for clustering multivariate mixed Gaussian or subspace
data, but is not suitable for data from other distributions. There are
also approaches based on probabilistic models, such as Bayesian
hierarchical clustering [11]. They all assume the forms of underlying
data distributions, which are unknown in many applications.

In this paper, we propose a novel graph-structural agglomera-
tive clustering algorithm. Although the power of graphs has been
extensively exploited in clustering [3,5,12,13], semi-supervised
learning [14,15], and manifold learning [16], they have received
little attention in agglomerative clustering. In our algorithm the
pairwise distances are only used to build a neighborhood graph,
since studies [16] show the effectiveness of using local neighbor-
hood graphs to model data lying on a low-dimensional manifold
embedded in a high-dimensional space. Then a structural descrip-
tor is defined to characterize the global structure of a cluster from
the local information encoded by the graph. It is assumed that two
clusters have large affinity if their structural descriptors undergo
substantial change when merging them into one cluster.

We propose path integral as the structural descriptor of clusters.
Paths are a fundamental concept of graph theory, and are used in
many graph-based algorithms. The description of paths gives rich
information about the data. There has been a lot of research work
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on studying various aspects of paths on graphs, such as finding the
shortest paths between nodes [17,18] or computing the similarity
between two nodes over paths [19,20]. For example, Saerens et al.
[18] proposed the randomized shortest path problem, which
allows a route agent to follow different paths according to some
probability distributions instead of only following the shortest
path connecting a source and a destination. Their proposed model
could be used to measure the dissimilarity between two nodes
accounting for multiple paths. However, the purpose of this paper
is to develop a structural descriptor of clusters, instead of finding
the shortest path between nodes or computing the pairwise
similarities between samples. The concept of path integral was
first introduced in statistical mechanics and quantum mechanics
[21–23], where it summed up the contributions of all possible
paths to the evolution of a dynamical system. In this work, we
provide our own formulation of path integral and its probabilistic
interpretation based on absorbing random walk. If we treat a
cluster as a dynamical system, with vertices as states and edge
weights as transition probabilities between states, then the path
integral measures the stability of the dynamical system, i.e.
randomly starting with any state of the dynamical system, the
probability of remaining within the same system after certain
steps of transitions. An example is shown in Fig. 1. The affinity of
two clusters is defined as the incremental path integral after
merging them. An intuitive explanation is that if two clusters are
closely connected, their stability will greatly increase after mer-
ging them. We show that the incremental path integral can
be computed in a closed-form exact solution, with linear time
complexity with respect to the maximum size of clusters. Experi-
mental comparisons on toy data and imagery data show the
excellent performance of the proposed algorithm and its robust-
ness to parameter settings.

Our algorithm has several advantages compared with existing
methods. First, since it measures the affinity of clusters based on
the neighborhood graph instead of directly on pairwise distances
between any pairs of samples, it can better cluster data on
manifolds and is more robust to noisy distances compared with
linkage algorithms [2] widely used in agglomerative clustering.
Second, different from spectral clustering [3,5] and clustering on
the manifold embedding results, it does not use any relaxation or
approximation. The graph structural merging strategy also makes
our algorithm more robust to noisy links than spectral clustering,
because our structural descriptor involves solving a linear system,
while the spectral clustering utilizes eigen-decomposition. Solving
eigen-vectors is more sensitive to noise than solving a linear
system [24,12]. Examples in the bottom row of Fig. 3 show that
our algorithm can handle for multi-scale data, i.e., a dataset that
contains structures with different densities and sizes, which is the
limitation of spectral clustering [25,26]. Third, it only requires the
pairwise distances or similarities of samples without any assump-
tions on the underlying data distributions. This is useful in the case
when the vector representations of data are not available. There-
fore, it has better flexibility and generalization than other agglom-
erative clustering methods such as lossy coding theory [10] and
Bayesian hierarchical clustering [11].

The paper is organized as follows. For ease of reading, the overall
clustering algorithm is first outlined in Section 2. Then, the
theoretical framework of path integral and incremental path
integral is presented in Section 3. Section 4 provides a probabilistic
interpretation of our algorithm based on absorbing random walk.
Experimental validations and conclusion are given in Sections 5 and
6, respectively.

2. Graph-structural agglomerative clustering

Our algorithm iteratively merges two clusters with maximum
affinity on a directed graph.

Building the digraph. Given a set of sample vectors X ¼ fx1;

x2;…; xng, we build a directed graph G¼ ðV ; EÞ, where V is the set
of vertices corresponding to the samples in X , and E is the set of
edges connecting vertices. The graph is associated with a weighted
adjacency matrix W¼ ½wij�, where wij is the pairwise similarity
between xi and xj defined as

wij ¼
exp −

distði; jÞ2
s2

 !
; if xj∈N K

i ;

0; otherwise:

8>><
>>: ð1Þ

distði; jÞ is the distance between xi and xj, and N K
i is the set of

K-nearest neighbors of xi. If xj∈N K
i , there is an edge pointing from

xi to xj with weight wij. s2 is estimated by s2 ¼ ½∑n
i ¼ 1∑xj∈N 3

i
dist

ði; jÞ2�=½3nð−ln aÞ�.1 K and a are free parameters to be set.
We define a randomwalk model on this directed graph. Denote

the transition probability matrix as P, whose element pij is
the one-step transition probability from vertex i to vertex j. P is
calculated as

P¼D−1W; ð2Þ
where D is a diagonal matrix whose diagonal element dii ¼∑n

j ¼ 1wij,
such that ∑n

j ¼ 1pij ¼ 1. The path integral of a cluster is computed by
summing the paths within the cluster on the directed graph
weighted by transition probabilities.

Affinity measure of clusters. Given two clusters Ca and Cb, their
structural affinity is measured as the amount of incremental path
integral ACa ;Cb when merging them, i.e.,

ACa ;Cb ¼ ðSCa jCa∪Cb−SCa Þ þ ðSCb jCa∪Cb−SCb Þ: ð3Þ
SCa is the path integral descriptor of Ca and sums up all the

paths in Ca. SCajCa∪Cb is the conditional path integral descriptor. All
the paths to be counted lie in Ca∪Cb. However, their starting and
ending vertices must be within Ca. If the vertices in Ca and Cb are
strongly connected, merging them will create many new paths
for the pairs of vertices in Ca, and therefore SCa jCa∪Cb will be much
larger than SCa . Section 4 will show that SCa measures the cluster's
stability, if Ca is treated as a dynamical system. An example for
illustration is shown in Fig. 2. The closed-form expressions of SCa

a b

c
d

Path Integral = Θ(a c) + Θ(b c) + Θ(c d) + Θ(b d) + Θ(a c d) + Θ(b c d)

Fig. 1. A toy example on the path integral description of a cluster. There are four length-1 paths and two length-2 paths in the cluster. The path integral is computed as the
sum of contributions of these paths. How to obtain each path's contribution is described in Section 3. For clarity, the vertices outside the cluster and the outer links are
not shown.

1 It is equivalent to setting the geometric mean of weights associated with
edges pointing to 3-nearest-neighbors as a, i.e., ð∏n

i ¼ 1∏xj∈N 3
i
wijÞ1=ð3nÞ ¼ a.
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