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a b s t r a c t

Feature combination is a popular method for improving object classification performances. In this paper
we present a simple and effective weighting scheme for feature combination based on the dominant-set
notion of a cluster. Specifically, we use dominant sets clustering to evaluate how accurate a kernel matrix
is expected to be for a SVM classifier. This expected kernel accuracy reflects the discriminative power of
the kernel matrix and thus used in weighting the kernel matrix in feature combination. Our method
is simple, intuitive, memory and computation efficient, and performs comparably to the popular and
sophisticated optimization based methods. We conduct experiments with several datasets of diverse
object types and validate the effectiveness of the proposed method. In fact, in five out of the six datasets
used in our experiments, we obtained the best results until now in our knowledge.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In order to design an effective object classification system,
feature combination is usually adopted in an attempt to combine
the strengths of multiple complementary features and produce
better performance than any individual feature. Feature combina-
tion methods can be categorized into two types according to the
level at which they operate [32]. The first one uses features of all
individual classifiers to form a joint feature vector, which is then
used in later classification. In the case of support vector machine
(SVM) classification, for example, feature combination translates
to combining a set of kernel functions into one final kernel
function. The second type operates at the decision or the score
level, namely, the outputs of all individual classifiers are used
in combination. This approach is attractive as different types of
classifiers, e.g., SVM and k-NN, can be combined together. In this
paper we focus on kernel combination with applications to SVM
classification.

Usually the kernel combination problem refers to the process
to find the best final kernel from the weighted sum of given kernels,
i.e., knðx; yÞ ¼∑n

i ¼ 1wikiðx; yÞ, where the weights wi; i¼ 1;…;n are
what we need. Average combination is the simplest combination
method and widely used as the benchmark for comparison with
other combination methods. In average combination, all participat-
ing kernels are given equal weights, regardless of how they perform
in practice. Intuitively this is not an optimal solution as we tend to

believe that kernels with larger discriminate power should be given
larger weights in order to obtain the best combination performance.
Based on this intuition, a straightforward approach is to estimate
the discriminative power of kernels with cross-validation and then
define the weights of kernels in combination. In this paper, however,
we propose another approach to make use of the intuition from a
difference perspective. Unlike the cross-validation method doing
classification inside training examples, our method is based on the
correlation between the SVM classification mechanism and domi-
nant sets clustering [24,25,30]. In other words, no classification
procedures are involved in our method. For ease of expression, in
this paper we call the estimated discriminative power of a kernel
as the kernel's accuracy. Intuitively, a kernel with a larger accuracy
should be given a larger weight in combination and vice versa.

In our method, the kernel accuracy measured by dominant sets
clustering reflects how accurate a kernel is for SVM classification,
and thus is used to weight the kernel in combination. Unlike MKL
[16] or LPBoost [11] calculating the weights from optimization
with all kernels, our method computes the weights of kernels
separately, i.e., given a kernel, our method outputs its weight in
combination. This implies that in the case that a very large number
of kernels are used in combination, e.g., [1], our method requires
much smaller memory than optimization based methods. While
the cross-validation method is also memory efficient, experiments
in Section 5 indicate that our approach produces better perfor-
mance with smaller computation consumption. Our approach is
intuitive and simple, but is shown to be effective in comparison
with other combination methods on a variety of datasets.

The paper is organized as follows. In Section 2 we briefly review
some of the major research advances in kernel combination, and
show how they inspire our work in this paper. Section 3 introduces
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the dominant set concept of a cluster, which is used to determine
the kernel weights in Section 4. In Section 4 we detail the method to
compute the weights of kernels in combination based on dominant
sets clustering. The experimental results are reported in Section 5
with comparison with other combination methods and the litera-
ture. In Section 6 we discuss the experimental results and future
plans to enhance the method. Finally, Section 7 concludes the paper.

2. Related works

Average combination and product combination are the two
simplest kernel combination methods. They define the final kernel
function as knðx; yÞ ¼ 1

n∑
n
i ¼ 1kiðx; yÞ and knðx; yÞ ¼ ð∏n

i ¼ 1kiðx; yÞÞ1=n
respectively. A more sophisticated idea is multiple kernel learning
(MKL) [16,15,18,35], which seeks to jointly optimize the weightswi

of all kernels in knðx; yÞ ¼∑n
i ¼ 1wikiðx; yÞ and the SVM parameters.

In recent advances in MKL, [40] proposed a non-linear kernel
combination method, i.e., learning different combinations for
different data point clusters, and obtained very encouraging
performance improvement. Other works on non-linear kernel
learning include [6,34]. Another promising direction is to use a very
large number of kernels in combination [1]. To efficiently solve the
MKL problem, [37] showed that p-norm MKL can be trained using
sequential minimal optimization (SMO) algorithm, and thus greatly
improves the training speed for large kernel space and large data
space. In contrast with MKL, [11] presented LPBoost to train the
weights of kernels and SVM parameters in two steps. First the SVMs
are trained separately on each kernel. Then the weights of all kernels
are optimized in a second step. Experiments on the Caltech datasets
validated the effectiveness of this method.

While various works on feature combination have been pub-
lished in the past decades, there are still many important problems
left unsolved in this domain. On one hand, existing combination
methods are often computation and memory expensive. The
popular MKL-like methods determine the weights of kernels based
on the optimization among all participating kernels, and this
usually means enormous computation and memory consumption,
especially when a large dataset or a very large number of kernels
are involved, e.g., the case in Bach [1]. On the other hand, the real
effectiveness of the sophisticated, optimization based methods in
practical applications has been called in question. In [11] Gehler
and Nowozin observed that if all participated features are carefully
designed to be powerful, the sophisticated optimization based
methods, e.g., MKL, do not show evident advantage over the
baseline average combination. Only when both strong and weak
features are combined, the optimization based methods reduce
the effect of weak features and perform better than average
combination. In the supplement to [11] it is also mentioned that
the predictive power of learning mixing coefficients seems to be
overestimated because of missing comparison with the simple (yet
powerful) average combination. Moreover, the supplement
claimed that there seems to be an agreement that MKL almost
never improves performance. In other words, the sophisticated
optimization operations, and also the large amount of computa-
tion and memory consumption involved in MKL, seem not neces-
sary at all and the demonstrated performance of MKL in literature
might also be obtained by the simple average combination.

Compared with average combination, the popular MKL-like
methods obtain tiny, if any, performance gain at the cost of
enormous computation and memory consumption. This observa-
tion prompts us to reassess the average-like simple combination
methods, whose credits are often under-estimated or even ignored
just because of their simpleness. With this consideration in mind,
and observing the correlation between the SVM classification
mechanism and dominant sets clustering, we propose to use

dominant sets clustering to evaluate the discriminative power
and determine the weights of kernels in combination.

3. Dominant sets and their properties

Dominant set is a graph-theoretic concept of a cluster and
dominant sets clustering algorithms have many advantages over
classical, e.g., spectral and graph-based, techniques. In particular,
they do not require a priori knowledge on the number of clusters
and make no assumption on the structure of the affinity matrix,
being able to work with asymmetric and even negative similarity
functions alike [30]. Further, they allow extracting overlapping
clusters and generalize naturally to high-order relations [26]. In
Section 4 we will see that these nice properties make dominant
sets clustering particularly attractive for our purpose of determin-
ing kernel accuracy by clustering. Since their introduction in Pavan
and Pelillo [24], dominant sets have found a variety of successful
applications in such diverse domains as bioinformatics [10],
content-based image retrieval [38], human activity analysis [12]
and object detection [41], etc.

Unlike traditional approaches to data clustering, which insist
on the idea of determining a partition of the input data, dominant
sets attempt to provide a formal answer to the question of what is
a cluster. Although motivated from purely graph-theoretical con-
cepts, being a generalization of the notion of a maximal clique to
edge-weighted graphs, dominant sets turn out to have non-trivial
connections to optimization theory and game theory. In this
section we provide the basic definitions and properties of domi-
nant sets, which are necessary to understand the proposed
method in this paper. The interested reader can find more details
in [24,25,30].

We represent the data to be clustered as an undirected edge-
weighted graph with no self-loops G¼ ðV ; E;wÞ, where V ¼
f1;…;ng is the vertex set, EDV � V is the edge set, and w :

E-Rn

þ is the (positive) weight function. Vertices in G correspond
to data points, edges represent neighborhood relationships, and
edge-weights reflect similarity between pairs of linked vertices. As
customary, we represent the graph G with the corresponding
weighted adjacency (or similarity) matrix, which is the n� n
nonnegative, symmetric matrix A¼ ðaijÞ defined as aij ¼wði; jÞ if
ði; jÞ∈E, and aij ¼ 0 otherwise. Since in G there are no self-loops, we
note that all entries on the main diagonal of A are zero.

Intuitively, a “cluster” can be informally defined as a maximally
coherent set of vertices, i.e., as a subset SDV which satisfies both
an internal criterion (all elements belonging to S should be highly
similar to each other) and an external one (no larger clusters
should contain S as a proper subset). In other words, a cluster
should have high internal homogeneity and there should be high
inhomogeneity between its elements and those outside. This
amounts to saying informally that the weights on the edges within
a cluster should be large, and those on the edges connecting the
cluster nodes to the external ones should be small.

Now, in an attempt to formally capture this notion, we need
some notations and definitions. For a non-empty subset SDV , i∈S,
and j∉S, we define

ϕSði; jÞ ¼ aij−
1
jSj ∑k∈S

aik: ð1Þ

where ∥S∥ denotes the cardinality of S. This quantity measures the
(relative) similarity between nodes i and j, with respect to the
average similarity between node i and its neighbors in S. Note that
ϕSði; jÞ can be either positive or negative. Next, to each vertex i∈S
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