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a b s t r a c t

This paper introduces a novel enhancement for unsupervised feature selection based on generalized
Dirichlet (GD) mixture models. Our proposal is based on the extension of the finite mixture model
previously developed in [1] to the infinite case, via the consideration of Dirichlet process mixtures, which
can be viewed actually as a purely nonparametric model since the number of mixture components can
increase as data are introduced. The infinite assumption is used to avoid problems related to model
selection (i.e. determination of the number of clusters) and allows simultaneous separation of data in to
similar clusters and selection of relevant features. Our resulting model is learned within a principled
variational Bayesian framework that we have developed. The experimental results reported for both
synthetic data and real-world challenging applications involving image categorization, automatic
semantic annotation and retrieval show the ability of our approach to provide accurate models by
distinguishing between relevant and irrelevant features without over- or under-fitting the data.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

As the amount of multimedia information available increases,
powerful approaches for analyzing, managing and categorizing these
data become crucial. Clustering plays an important role in exploratory
analysis of data. It provides principled means of discovering hetero-
genous groupings (i.e. clusters) in data and has been the topic of
extensive research in the past [2–7]. Data clustering is known to be a
challenging task in modern knowledge discovery and data mining.
This is especially true in high-dimensional spaces mainly because of
data sparsity [8,9] and a crucial step in this case is the selection of
relevant features [10–12,1]. Finite mixture models are well suited for
clustering due to their simple structure and flexibility which offer a
principled formal approach to unsupervised learning [13,14]. In the
classic approach to mixture models implementation, the density
components are usually chosen as Gaussian and the number of
components is supposed to be finite. Many methods for selecting
the optimal number of clusters can be found in the literature (see, for
instance, [15–17]). These approaches can be classified into two groups
namely deterministic and Bayesian. The majority of both deterministic
and Bayesian previous model selection approaches have to consider all
possible values of the number of mixture components up to a certain
maximum value and then choose the optimal one according to a

certain criterion which is unfortunately computationally prohibitive
(i.e. the learning algorithm have to be run for different choices of the
number of mixture components) and may cause over- and under-
fitting problems. A significant contribution that overcomes these
drawbacks was made in [18] through the development of infinite
mixture models which constitute an interesting extension of the
typical finite mixture models approach by allowing the number of
mixture components to increase as new data arrive. Infinite mixture
models are based on the notion of Dirichlet processes which is one of
the most popular Bayesian nonparametric models and is defined as a
distribution over distributions [19–21].

Thanks to the recent development of Markov Chain Monte Carlo
(MCMC) techniques [22], infinite mixture models have been widely
and successfully used in various applications (see, for instance, [23–
28]) by embodying the well-known Occam's Razor principle [29].
Concerning feature selection, although a lot of attention has been
devoted to supervised feature selection (see, for instance, [30–32]),
some unsupervised feature selection techniques have been proposed
recently [33–39]. And some of these unsupervised techniques have
been based on finite mixture models, but generally suppose that each
per-component density is Gaussian with diagonal covariance matrix
(i.e. the features are supposed independent)1 [41–43].
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met in practice [40].
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Recently a nonparametric Bayesian unsupervised feature selec-
tion approach has been proposed in [44]. The main idea was the
consideration of the infinite generalized Dirichlet (GD) mixture model,
which offers high flexibility and ease of use, for simultaneous
clustering and feature selection. One of the main advantages of this
approach is that the structural properties of the GD allows it to be
defined in a space where the independence of the features becomes a
fact and not an assumption as shown for instance in [1]. The authors in
[44] have proposed a fully Bayesian treatment of the unsupervised
feature selection approach that they have previously introduced in [1]
in order to overcome problems related to deterministic learning. The
learning approach in [44] was based on the introduction of prior
distributions over the mixture parameters. These parameters have
been then estimated using a typical MCMC approach based on
both Gibbs sampling and Metropolis–Hastings algorithms. MCMC
techniques are effective for parameters estimation, but are unfortu-
nately computationally very demanding and it can be very hard to
diagnose their convergence. This is especially true in the case of high-
dimensional data which involve the integration over a large number of
model parameters. The accurate evaluation of such high-dimensional
integrals has been the topic of extensive research. Recently, variational
approaches, known also as ensemble learning [45–47], have been
proposed as an efficient alternative to MCMC techniques. Motivated by
the good results obtained recently using variational techniques for
modeling mixture models, in this paper we extend the learning
approach in [44] by developing a variational alternative. The contribu-
tion of this paper is three-fold. First, we extend the finite GD mixture
model with feature selection to the infinite case using a stick-breaking
construction [48] such that the difficulty of choosing the appropriate
number of clusters can be solved elegantly. Second, we propose a
variational inference framework for learning the proposedmodel, such
that the model parameters and features saliencies are estimated
simultaneously in a closed form. In particular, conjugate priors are
developed for all the involved parameters. Last, we apply the proposed
approach to solve two challenging problems involving visual scenes
categorization, and image automatic semantic annotation and retrie-
val. An appealing feature of the proposed variational approach is that
it allows avoiding over-fitting by finding a compromise between
generality and the number of parameters by implicitly providing a
model order selection criterion [49,46,50]. Readers unfamiliar
with Bayesian learning and the variational Bayes framework are
referred to [45,51].

The paper is organized as follows. In Section 2 we present our
infinite feature selection model. In Section 3 we develop a practical
variational approach to learn the parameters of this model. Section 4 is
devoted to experimental results of using our approach. This is
followed, in Section 5, by a discussion of our findings and conclusions.

2. The infinite GD mixture model for feature selection

In this section, we describe our main unsupervised infinite
feature selection model. We start by a brief overview of the finite
GD mixture model. Then, the extension of this model to the
infinite case and the integration of feature selection are proposed.
Finally, we present the conjugate priors that we will consider for
the resulting model learning.

2.1. The finite GD mixture model

Consider a random vector Y
!¼ ðY1;…;YDÞ, drawn from a finite

mixture of GD Distributions with M components [52] as

pð Y!j π!; α!; β
!Þ¼ ∑

M

j ¼ 1
πjGDð Y

!j α!j; β
!

jÞ ð1Þ

where α!¼f α!1;…; α!Mg, β
!¼ f β!1;…; β

!
Mg, α!j and β

!
j are the

parameters of the GD distribution representing component j with
α!j ¼ fαj1;…; αjDg and β

!
j ¼ fβj1;…; βjDg, and π!¼ fπ1;…; πMg repre-

sents the mixing coefficients which are positive and sum to one.
A GD distribution is defined as

GDð Y!j α!j; β
!

jÞ ¼ ∏
D

l ¼ 1

Γðαjl þ βjlÞ
ΓðαjlÞΓðβjlÞ

Yαjl−1
l 1− ∑

l

k ¼ 1
Yk

 !γjl

ð2Þ

where ∑D
l ¼ 1Ylo1 and 0oYlo1 for l¼ 1;…;D, αjl40, βjl40,

γjl ¼ βjl−αjlþ1−βjlþ1 for l¼ 1;…;D−1, and γjD ¼ βjD−1.
Now, let us consider a set of N independent identically

distributed vectors Y ¼ ð Y!1;…; Y
!

NÞ assumed to arise from a finite
GD mixture. Following the Bayes' theorem, the probability that
vector i is in cluster j conditional on having observed Y

!
i (also

known as responsibilities) can be written as

pðjj Y!iÞ∝πjGDð Y
!

ij α!j; β
!

jÞ ð3Þ
In our work, we exploit an interesting mathematical property of
the GD distribution previously discussed in [52,1] to redefine the
responsibilities as

pðjj Y!iÞ∝πj ∏
D

l ¼ 1
BetaðXiljαjl; βjlÞ ð4Þ

where Xi1 ¼ Yi1 and Xil ¼ Yil=ð1−∑l−1
k ¼ 1YikÞ for l41 and

BetaðXiljαjl; βjlÞ is a Beta distribution defined with parameters
ðαjl; βjlÞ. Thus, the clustering structure for a finite GD mixture
model underlying data set Y can be represented by a new data
set X ¼ ðX!1;…X

!
NÞ using the following mixture model with

conditionally independent features

pðX!ij π!; α!; β
!Þ¼ ∑

M

j ¼ 1
πj ∏

D

l ¼ 1
BetaðXiljαjl; βjlÞ ð5Þ

It is noteworthy that this property plays a critical role for the GD
mixture model, since the independence between the features
becomes a fact rather than an assumption as considered in
previous unsupervised feature selection Gaussian mixture-based
approaches [41,42].

2.2. Infinite GD mixture model with feature selection

The Dirichlet process (DP) [20] is a stochastic process whose
sample paths are probability measures with probability one. It can
be considered as a distribution over distributions. The infinite GD
mixture model with feature selection proposed in this paper is
constructed using the DP with a stick-breaking representation.
Stick-breaking representation is an intuitive and straightforward
constructive definition of the DP [48,53,54]. It is defined as
follows: given a random distribution G, it is distributed according
to a DP: G∼DPðψ ;HÞ if the following conditions are satisfied:

λj∼Betað1;ψÞ; Ωj∼H;πj ¼ λj ∏
j−1

s ¼ 1
ð1−λsÞ; G¼ ∑

∞

j ¼ 1
πjδΩj ð6Þ

where δΩj denotes the Dirac delta measure centered at Ωj, and ψ is
a positive real number. The mixing weights πj are obtained by
recursively breaking an unit length stick into an infinite number of
pieces.

Assuming now that the observed data set is generated from a
GD mixture model with a countably infinite number of compo-
nents. Thus, (5) can be rewritten as

pðX!ij π!; α!; β
!Þ¼ ∑

∞

j ¼ 1
πj ∏

D

l ¼ 1
BetaðXiljαjl; βjlÞ: ð7Þ

Then, for each vector X
!

i, we introduce a binary latent variable
Z
!

i ¼ ðZi1; Zi2;…Þ, such Zij∈f0;1g and Zij ¼ 1 if X
!

i belongs to
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