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a b s t r a c t

In part I of this two-part study, we introduced a new optimal Bayesian classification methodology that

utilizes the same modeling framework proposed in Bayesian minimum-mean-square error (MMSE)

error estimation. Optimal Bayesian classification thus completes a Bayesian theory of classification,

where both the classifier error and our estimate of the error may be simultaneously optimized and

studied probabilistically within the assumed model. Having developed optimal Bayesian classifiers in

discrete and Gaussian models in part I, here we explore properties of optimal Bayesian classifiers, in

particular, invariance to invertible transformations, convergence to the Bayes classifier, and a

connection to Bayesian robust classifiers. We also explicitly derive optimal Bayesian classifiers with

non-informative priors, and explore relationships to linear and quadratic discriminant analysis (LDA

and QDA), which may be viewed as plug-in rules under Gaussian modeling assumptions. Finally, we

present several simulations addressing the robustness of optimal Bayesian classifiers to false modeling

assumptions. Companion website: http://gsp.tamu.edu/Publications/supplementary/dalton12a.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In the first part of this two-part study [1], we defined an optimal

Bayesian classifier to be a classifier that minimizes the probability of
misclassifying a future point relative to the assumed model condi-
tioned on the observed sample, or equivalently minimizes the
Bayesian error estimate. The problem of optimal Bayesian classifica-
tion over an uncertainty class of feature-label distributions arises
naturally from two related sources: the need for accurate classifica-
tion and the need for accurate error estimation. With small samples,
the latter is only possible with application of prior knowledge
in conjunction with the sample data. Given prior knowledge, it
behooves us to find an optimal error estimator and classifier relative
to the prior knowledge. Having found optimal Bayesian error
estimators in [2,3], found analytic representation of the MSE of
these error estimates in [4,5], and found expressions for optimal
Bayesian classifiers in terms of the effective class-conditional
densities in [1], here, in part II we examine basic properties of
optimal Bayesian classifiers.

We study invariance to invertible transformations in discrete
and continuous models, convergence to the Bayes classifier, and a

connection to robust classification. The latter is a classical filtering
problem [6,7], where in the context of classification one wishes to
find an optimal classifier over a parameterized uncertainty class
of feature-label distributions absent new data [8]. Heretofore, the
robust classification problem had only been solved in a subopti-
mal manner and now the optimal robust classifier falls out from
the theory of optimal Bayesian classification. We also explicitly
derive optimal Bayesian classifiers using non-informative priors
and, using Gaussian modeling assumptions, compare these to
plug-in classification rules, such as linear discriminant analysis
(LDA) and quadratic discriminant analysis (QDA), which are opti-
mal in fixed Gaussian models with common covariance matrix and
different covariance matrices, respectively. Finally, we present
several simulations addressing the robustness of optimal Bayesian
classifiers to false modeling assumptions. Having some robustness
to incorrect modeling assumptions is always important in practice
because, even if one utilizes statistical techniques, such as hypoth-
esis tests, for model checking, these can at best, even for very small
p values, lead to not rejecting the assumed model.

For the sake of completeness, we begin by stating some key
definitions and propositions from Part I [1]. An optimal Bayesian

classifier is any classifier, cOBC, satisfying

Epn ½eðy,cOBCÞ�rEpn ½eðy,cÞ�, ð1Þ

for all cAC, where eðy,cÞ is the true error of classifier c under a
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feature-label distribution parameterized by yAH and C is an
arbitrary family of classifiers. In (1), the expectations are taken
relative to a posterior distribution, pnðyÞ, on the parameters that is
updated from a prior, pðyÞ, after observing a sample, Sn, of size n.
An optimal Bayesian classifier minimizes the Bayesian error
estimate, beðc,SnÞ ¼ Epn ½eðy,cÞ�. For a binary classification problem,
the Bayesian framework defines y¼ ½c,y0,y1�, where c is the a

priori probability that a future point comes from class 0 and y0

and y1 parameterize the class-0 and class-1-conditional distribu-
tions, respectively. For a fixed class, yAf0,1g, we let f yy

ðx9yÞ be the
class-conditional density parameterized by yy and denote the
marginal posterior of yy by pnðyyÞ. If Epn ½c� ¼ 0, then the optimal
Bayesian classifier is a constant and always assigns class 1;
if Epn ½c� ¼ 1 then it always assigns class 0. Hence, we typically
assume that 0oEpn ½c�o1. Two important theorems from Part I
follow.

Theorem 1 (Evaluating Bayesian error estimators). Let c be a fixed

classifier given by cðxÞ ¼ 0 if xAR0 and cðxÞ ¼ 1 if xAR1, where

measurable sets R0 and R1 partition the sample space. Then

beðc,SnÞ ¼ Epn ½c�

Z
R1

f ðx90Þ dxþð1�Epn ½c�Þ

Z
R0

f ðx91Þ dx, ð2Þ

where IE is an indicator function equal to one if E is true and zero

otherwise, and

f ðx9yÞ ¼
Z

Hy

f yy
ðx9yÞpnðyyÞ dyy, ð3Þ

is known as the effective class-conditional density.

Theorem 2 (Optimal Bayesian classification). An optimal Bayesian

classifier, cOBC, satisfying (1) for all cAC, the set of all classifiers with

measurable decision regions, exists and is given pointwise by

cOBCðxÞ ¼
0 if Epn ½c�f ðx90ÞZ ð1�Epn ½c�Þf ðx91Þ,

1 otherwise:

(
ð4Þ

2. Transformations of the feature space

Consider an invertible transformation, t : X-X , mapping from
some original feature space, X , to a new space, X (in the
continuous case we also assume that the inverse map is con-
tinuously differentiable). The following theorem shows that the
optimal Bayesian classifier in the transformed space can be found
by transforming the optimal Bayesian classifier in the original
feature space pointwise, and that both classifiers have the same
expected true error.

The advantages of this fundamental property are at least
twofold. First, the data can be losslessly preprocessed without
affecting optimal classifier design or the expected true error,-
which is not true in general,for example with LDA classification
under a non-linear transformation. Second, it is possible to solve
or interpret optimal classification and error estimation problems
by transforming to a more manageable space, similar to the
‘‘kernel trick’’ used to map features to a high-dimensional feature
space having a meaningful linear classifier. We denote equivalent
constants and functions in the transformed space with an over-
line, for example we write a point x in the transformed space as x.

Theorem 3 (Invariance to invertible transformations). Consider a

Bayesian model with posterior pnðyÞ in either a discrete or Euclidean

feature space, X . Suppose cOBC is an optimal Bayesian classifier

satisfying (1) for all cAC, where C is a family of classifiers (not

necessarily all classifiers) with measurable decision regions. More-

over, suppose that the original sample space is transformed by an

invertible mapping t, and that in the continuous case t�1 is

continuously differentiable with an almost everywhere full rank

Jacobian. Then the optimal classifier in the transformed space

among C ¼ fc9c ¼cJt�1 for some cACg is cOBCðxÞ ¼cOBCðt
�1

ðxÞÞ and both classifiers possess the same Bayesian error estimate,
Epn ½eðy,cOBCÞ�.

Proof. For a fixed class yAf0,1g, in the continuous case the class-
conditional density parameterized by yy in the transformed space
is f yy

ðx9yÞ ¼ f yy
ðt�1ðxÞ9yÞ9detðJðxÞÞ9, where JðxÞ is the Jacobian of

t�1 evaluated at x. In the discrete case, f yy
ðx9yÞ ¼ f yy

ðt�1ðxÞ9yÞ and
to unify the two cases we say 9detðJðxÞÞ9¼ 1. Although each class-
conditional density in our model uncertainty class will change
with the transformation, each may still be indexed by the same
parameter, yy, and hence the same prior and posterior may be
used in both spaces. The effective class-conditional density is thus
given by

f ðx9yÞ ¼
Z

Hy

f yy
ðx9yÞpnðyyÞ dyy

¼

Z
Hy

f yy
ðt�1ðxÞ9yÞ9detðJðxÞÞ9pnðyyÞ dyy

¼ f ðt�1ðxÞ9yÞ9detðJðxÞÞ9: ð5Þ

Let cAC be an arbitrary fixed classifier given by cðxÞ ¼ IxAR1
,

where R1 is a measurable set in the original sample space. Then
cðxÞ ¼ Ix AR1

is the equivalent classifier in the transformed space
(cðxÞ ¼cðt�1ðxÞÞ), where R1 ¼ ftðxÞ9xAR1g. Noting that Epn ½c�

remains unchanged, and by Theorem 1 the expected true error
of c is given by

Epn ½eðy,cÞ� ¼ Epn ½c�

Z
R1

f ðx90Þ dxþð1�Epn ½c�Þ

Z
X�R1

f ðx91Þ dx

¼ Epn ½c�

Z
R1

f ðt�1ðxÞ90Þ9detðJðxÞÞ9 dx

þð1�Epn ½c�Þ

Z
X�R1

f ðt�1ðxÞ91Þ9detðJðxÞÞ9 dx

¼ Epn ½c�

Z
R1

f ðx90Þ dxþð1�Epn ½c�Þ

Z
X�R1

f ðx91Þ dx

¼ Epn ½eðy,cÞ�, ð6Þ

where the integrals in the second to last line have applied the
substitution x¼ t�1ðxÞ. If cOBC is an optimal Bayesian classifier in the
original space and cOBC is the equivalent classifier in the transformed
space, then cOBC also minimizes expected true error and thus is an
optimal Bayesian classifier in the transformed space. &

3. Convergence to the Bayes classifier

A key property of a classification rule is consistency: does the
classifier converges to a Bayes classifier as n-1? In contrast to
the Bayesian modeling framework, analysis in this section uses
frequentist asymptotics, which concern behavior with respect to a
fixed parameter and its sampling distribution. In particular, the
next theorem shows that consistency holds for optimal Bayesian
classification, as long as the true distribution is contained in the
parameterized family with mild conditions on the prior.

As discussed in [5], we expect the posterior of y to converge in
some sense to the true value of y. We review the formalities here,
and as such we require measure theory and a few definitions.
First, if ln and l are probability measures on a measure space
H with Borel s-algebra BH, then ln-l weakn if and only ifR

f dln-
R

f dl for all bounded continuous functions f on H.
Second, in a general Bayesian estimation problem where y is
the unknown true parameter in a parameter space, H, and the
feature space, X , is a complete separable metric space, let Fy be
the probability measure on X corresponding to the true distribu-
tion parameterized by y. Further assume an independent and
identically distributed (i.i.d.) sampling process, and let the infinite
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