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a b s t r a c t

A nonlinear dynamical system can be defined as a study of any system that implies motion, change, or

evolution in time where a change in one variable is not proportional to a change in a related variable.

The mathematical operations underlying such a system are very useful for pattern recognition with

time-series data. One of the most recent developments in nonlinear dynamical analysis is the so-called

approximate entropy family. However, its algorithms are deterministic and do not consider uncertainty

where the modeling of possibility can be appropriate and advantageous in many practical situations.

Thus, possibilistic entropy algorithms are proposed in this paper as a new methodology for nonlinear

dynamical analysis. The proposed approach is based on the notions of the approximate entropy family,

geostatistics, and the theory of fuzzy sets. Furthermore, for the first time, nonlinear dynamical analysis

of mass spectrometry data is presented for computer-based recognition of potential protein biomarkers

and classification, which can be utilized for early disease prediction. Experimental results using

proteomic and genetic data have shown the potential application of the proposed possibilistic nonlinear

dynamical analysis to the study of complex biosignals.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear dynamical analysis methods derived from the infor-
mation theory for measuring the complexity of time-series data
have been successfully applied to many scientific disciplines,
including biology, physiology, medicine, biophysics, chemistry,
and economics [1]. In fact, analysis of similarity of time series is
an active area of research in pattern classification and recognition
[2–4]. However, the impact of these methods has only been partly
explored to date for a better understanding of physiological
function [5]. Some important physiological findings based on
the concepts of nonlinear dynamics were also addressed in [5],
including four major methodology families: fractals, entropy
measures, symbolic dynamics measures, and Poincaré plot repre-
sentation. Among these four families, the entropy measures are
the most widely used methods for studying biological and
physiological time-series data. In fact, the concept of entropy is
variously defined in physics, mathematics, statistics, computer
science, engineering, life science, economics, and many other
disciplines. Because of its general characteristics, it has many
interpretations and been a confusing idea to many researchers of
different study fields [6,7]. John von Neumann actually suggested

the term ‘‘entropy’’ because ‘‘no one knows what entropy really is,
so in debate you will always have the advantage’’ [7].

After the introduction of the mathematical definition of
entropy into the theory of information by Shannon [8], there
have been several extensions of its principle. Popular types of
entropy include fuzzy entropy [9], Kolmogorov–Sinai entropy
[10,11], approximate entropy (ApEn) [12], etc. In particular, the
fuzzy entropy defined in [9] replaces the probabilities of the
values of a random variable by the fuzzy membership grades of a
fuzzy set. It is therefore considered as a measure of the fuzziness
of a fuzzy set. The entropy approach discussed in this paper refers
to the original definition of the approximate entropy (ApEn),
which was developed for understanding signal predictability or
system complexity. The first method of this entropy family,
known as approximate entropy (ApEn), was developed by Pincus
[12–14]. ApEn is rooted in the work of Grassberger and Procaccia
[15] and Eckmann and Ruelle [16], and widely applied in clinical
cardiovascular studies and analysis of biomedical signals [17,18].
A low value of the approximate entropy indicates the time series
is deterministic (low complexity), whereas a high value indicates
the data is subject to randomness (high complexity) and therefore
difficult to predict. In other words, lower entropy values indicate
more regular the signals under study, whereas higher entropy
values indicate more irregular the signals.

Extending the framework of approximate entropy (ApEn),
sample entropy (SampEn) [19] and multiscale entropy (MSE)
[20] was introduced to enhance the predictability analysis of
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time-series data with particular reference to physiological signals.
In general, both ApEn and SampEn estimate the probability that
the sequences in a dataset which are initially closely related
remain closely related, within a given tolerance, on the next
incremental comparison. ApEn differs from SampEn in that its
calculation involves counting a self-match for each sequence of a
pattern, which leads to bias in ApEn [14]. SampEn is precisely the
negative natural logarithm of the conditional probability that two
sequences similar for m points remain similar at the next point,
where self-matches are not included in calculation of the prob-
ability. Thus a lower value of SampEn also indicates more self-
similarity in the time series. Based on the concept of fuzzy sets, a
method named FuzzyEn was developed [21], where the similarity
is defined by the degree of fuzziness and the shapes of the fuzzy
membership functions.

This family of entropy measures has been increasingly applied to
many problems in biomedical engineering and other fields of life
sciences [22,23]. However, it has been pointed out that ApEn suffers
from two major drawbacks: (1) because it is a function of the length
of the sequence under study, it yields entropy values lower than
expected for short sequences, being due to the counting of a self-
match for each sequence, which leads to bias [14] and (2) it can be
inconsistent with different testing conditions using different para-
meters of the entropy index. SampEn does not count self-matches
and therefore can reduce bias. It has been found that SampEn can
provide better relative consistency than ApEn because it is largely
independent of sequence length [19]. MSE measures complexity of
time-series data by taking into account multiple time scales, but MSE
uses SampEn to quantify the regularity of the data. Most recently, as
another entropy method, namely GeoEntropy (GeoEn), has been
developed [24]. Although GeoEn can relax the assumption of the
parameter selections encountered by other entropy-based methods, it
does not allow the continuous modeling of the similarity measure.
Based on the motivation that the theory of fuzzy sets has been found
to be useful for analysis of complex physiological signals [21], two
new possibilistic entropy methods, namely PossEnH and PossEnP,
with particular reference to the study of biomedical signals, are
introduced in this paper, which have the capability of identifying the
correlated structural (spatial) information of mass spectrometry data,
based on which multiple potential biomarkers can be selected. These
entropy measures are based on the notion of the theory of possibility
[25], which is a fuzzy restriction acting as an elastic constraint on the
values that may be assigned to the variable of similarity in our study.
The development of a possibilistic entropy using the ordinary kriging
scheme (PossEnP) has been briefly reported in the literature [26].
This paper largely extends both technical and experimental discus-
sions of the possibilistic entropy in the context of PossEnH and
PossEnP, which can be useful for different purposes of applications.

The rest of this paper is organized as follows. Section 2
presents a possibilistic entropy measure as an extension of GeoEn
by the modeling of possibility in uncertainty considered as an
alternative to probability. Section 3 presents another possibilistic
entropy measure which is based on the theory of possibility and a
kriging estimator. Three experiments using three datasets to test
the performance of the possibilistic entropy analysis of proteomic
mass spectra of major adverse cardiac events for identifying
potential biomarkers, cancer classification, and DNA similarity
searching are discussed in Section 4. Finally, Section 5 is the
conclusion of the research finding.

2. Possibilistic entropy: extended GeoEntropy

Let XN be a time series of length N : XN ¼ fx1, . . . ,xNg and Qm be
the set of all subsequences of the same length m in XN : Qm ¼

fX1m, . . . ,XðN�mþ1Þmg, where Xim ¼ fxi, . . . ,xiþm�1g. It is said that Xim

and Xjm are similar if and only if

9xiþk�xjþk9or 8k, 0rkom ð1Þ

where r is threshold for similarity.
The probability of patterns of length m that are similar to the

pattern of the same length that begins at i is

CimðrÞ ¼
KimðrÞ

N�mþ1
ð2Þ

where Kim(r) is the number of subsequences in Qm that are similar
to Xim.

The total average probability Cim(r) for all i, i¼ 1, . . . ,N�mþ1, is

CmðrÞ ¼
1

N�mþ1

XN�mþ1

i ¼ 1

CimðrÞ ð3Þ

The approximate entropy (ApEn), given length m and tolerance
value r, can now be readily computed by

ApEnðm,rÞ ¼ log
CmðrÞ

Cmþ1ðrÞ

� �
ð4Þ

To avoid bias in self-matching encountered in ApEn, sample
entropy (SampEn) works in a slightly different way by defining
Xim and Xjm are similar if and only if

9xiþk�xjþk9or 8k, 0rkom, ia j ð5Þ

Let Lm ¼ fX1m, . . . ,XðN�m�1Þmg be the probability of patterns of
length m that are similar to the pattern of the same length that
begins at i is

BimðrÞ ¼
JimðrÞ

N�m�1
ð6Þ

where Jim(r) is the number of subsequences in Lm that are similar
to Xim.

The total average probability Bim(r) for all i, i¼ 1, . . . ,N�m, is

BmðrÞ ¼
1

N�m

XN�m

i ¼ 1

BimðrÞ ð7Þ

Finally, the value of SampEn, given m and r, can be calculated
by the following equation:

SampEnðm,rÞ ¼ log
BmðrÞ

Bmþ1ðrÞ

� �
ð8Þ

Although approximate entropy has been widely used for
studying the complexity of biosignals, it suffers from two major
drawbacks [22]: (1) because it is a function of the length of the
sequence under study, it yields values lower than expected for
short sequences; (2) it can be inconsistent with different testing
conditions using different parameters of the entropy index.
SampEn does not count self-matches and therefore can reduce
bias. It has been found that SampEn can provide better relative
consistency than ApEn because it is largely independent of
sequence length [19]. MSE measures complexity of time series
data by taking into account multiple time scales, and uses
SampEn to quantify the regularity of the data. All of these three
methods depend on the selection of the two parameters known as
m and r: parameter m is used to determine the sequence length,
whereas parameter r is the tolerance threshold for computing
pattern similarity. Results are sensitive to the selections of these
two parameters and it has recently been reported that good
estimates of these parameters for different types of signals are
not easy to obtain [27]. GeoEn [24] introduces a geostatistical
distance to provide a solution for the determination of m and r.
Its principle is based on the theory of regionalized variables
in geostatistics [28]. However, criterion of GeoEn for determining
the similarity is based on a hard threshold as the absolute
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