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In this work, we propose a novel approach towards sequential data modeling that leverages the

strengths of hidden Markov models and echo-state networks (ESNs) in the context of non-parametric

Bayesian inference approaches. We introduce a non-stationary hidden Markov model, the time-

dependent state transition probabilities of which are driven by a high-dimensional signal that encodes

the whole history of the modeled observations, namely the state vector of a postulated observations-

driven ESN reservoir. We derive an efficient inference algorithm for our model under the variational

Bayesian paradigm, and we examine the efficacy of our approach considering a number of sequential

data modeling applications.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The hidden Markov model (HMM) is increasingly being adopted
in applications since it provides a convenient way of modeling
observations appearing in a sequential manner and tending to cluster
or to alternate between different possible components (subpopula-
tions) [1]. Specifically, HMMs with continuous observation densities
have been used in a wide spectrum of applications in ecology,
encryption, image understanding, speech recognition, and machine
vision applications [2].

Hidden Markov models are based on the assumption that each
data point in a sequence of observations is generated by a latent
(hidden) model state. Usually, a first-order hidden Markov chain is
postulated, thus limiting the considered state dependencies only to
successive observations. Longer dependencies between data over
time may be also considered, by postulating the higher-order hidden
Markov chains; however, such a selection may also give rise to an
overwhelming increase in the computational complexity of the
model, rendering it unattractive in most practical applications [2].

Echo-state networks are a groundbreaking and surprisingly
efficient network structure for recurrent neural network (RNN)
training [3–6]. ESNs avoid the shortcomings of typical, gradient-
descent-based RNN training by randomly creating a recurrent
neural network which remains unchanged during training. This
RNN is called the reservoir. It is passively excited by the input
signal and maintains in its state a non-linear transformation of
the input history. Indeed, the function of the reservoir in ESNs can
be compared to that of the kernel function in kernel machine

approaches (e.g., support vector machines [7], relevance vector
machines [8], and their variants [9]): input signals drive the non-
linear reservoir and produce a high-dimensional dynamical ‘‘echo
response’’, which is used as a non-orthogonal basis to reconstruct
the desired outputs. The obtained reservoir state values of the
ESN networks capture long-term dependencies between the
modeled data, by encoding the history of the observed values of
their driving signals.

Motivated by these advances, in this paper we exploit the
merits of ESN reservoirs in order to provide a novel non-stationary

HMM formulation for sequential data modeling. The proposed
model is based on the fundamental assumption that the prob-
abilities of HMM state transition are not stationary, but instead
they depend on time, and specifically on the whole history of
observed data, as encoded in the state vectors of an echo-state
network reservoir. That is, an HMM with reservoir-driven non-
stationary state transition probabilities is essentially introduced.
The main advantage of the proposed approach is that it allows to
model longer temporal dependencies compared to conventional
HMMs, by introducing the dynamic information captured from
the postulated ESN reservoirs into the state transition mechanics
of the latent Markov chain. Derivation of our model is conducted
under a non-parametric Bayesian approach to allow for automatic
data-driven determination of the appropriate model size.

Non-parametric Bayesian modeling techniques, especially Dirich-
let process (DP) prior-based models, have become very popular in
statistics over the last few years, for performing non-parametric
density estimation [10–12]. Briefly, a realization of a DP prior-based
model can be seen as an infinite mixture of distributions with given
parametric shape (e.g., Gaussian, HMM, etc.). This theory is based on
the observation that an infinite number of component distributions
in an ordinary finite mixture model tends on the limit to a Dirichlet
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process prior [11,13]. Exploitation of the merits of non-parametric
Bayesian statistics has allowed for coming up with computationally
efficient formulations of HMMs that allow for doing inference over
the number of model states, thus obviating the need of model order
selection. For example, in [14], an infinite HMM was proposed,
based on the introduction of a hierarchical Dirichlet process (HDP)
prior over the model state transition probabilities. In [15], hierarch-
ical stick-breaking priors were imposed over the model state
transition probabilities instead of the HDP, to allow for more
efficient model inference by means of a truncated variational
Bayesian inference technique.

As we shall discuss in the following sections, the formulation
of our model consists in introduction of a joint stick-breaking and
ESN reservoir-driven prior over the model state transition prob-
abilities, which gives rise to an elaborate reservoir-driven HMM in
the context of a non-parametric Bayesian inference setting. We
derive an efficient truncated algorithm for model inference based
on the variational Bayesian paradigm, and we experimentally
demonstrate the efficacy of our approach. We dub the resulting
model the echo-state stick-breaking HMM (ES-SB-HMM).

Indeed, our approach towards non-stationary HMMs with obser-
vation-driven state transitions is related to the approach taken by
conditional random fields (CRFs). A CRF is simply a log-linear model
representing the conditional distribution of the model states given
the observed data with an associated graphical structure. In other
words, they explicitly model data-driven transitions. Because the
model is conditional, dependencies among the observed variables do
not need to be explicitly represented, affording the use of rich, global
features of the input [16]. A drawback of CRFs is that they cannot be
used for the classification of whole sequences into a number of
learned classes. The hidden CRF (HCRF) [17] is a discriminative
model that caters to these needs, by modeling the class labels of
whole sequences of observations conditional on the observed
sequential data, considering that each observation is also assigned
a latent label variable which is optimized as model parameter.

The remainder of this work is organized as follows: In Section 2,
we provide a brief overview of echo-state networks and the DP
prior. In Section 3, we introduce the ES-SB-HMM and derive an
efficient truncated variational Bayesian algorithm for model infer-
ence. In Section 4, we evaluate our approach considering a number
of applications from diverse domains, using benchmark datasets,
and we compare it to CRFs, HCRFs, and SB-HMMs. Finally, in the last
section, we summarize our results and draw our conclusions.

2. Theoretical background

2.1. Echo-state networks

As already discussed, the basic component of ESNs is a
discrete-time RNN, called the reservoir. Let us consider an ESN
comprising N reservoir neurons. ESN function is described by the
following reservoir state update equation:

1tþ1 ¼ ð1�gÞhðW1tþW inxtþ1Þþg1t ð1Þ

where 1t is the reservoir state at time t (an N-dimensional vector
of real numbers), W is the reservoir weight matrix, that is, the
matrix of the weights of the synaptic connections between the
reservoir neurons, xt is the observed signal fed to the network at
time t, gZ0 is the retainment rate of the reservoir (with g40 if
leaky integrator neurons are considered), W in are the weights of
xt , and hð�Þ is the activation function of the reservoir. All the
weight matrices to the reservoir (W ,W in) are initialized ran-
domly. The initial state of the reservoir is usually set to zero,
10 ¼ 0.

An extensively studied subject in the field of ESNs concerns the
introduction of appropriate goodness measures of the reservoir
structure. Indeed, the classical feature that reservoirs should
possess is the echo-state property. This property essentially states
that the effect of a previous reservoir state and a previous input
on a future state should vanish gradually as time passes, and not
persist or even get amplified. However, for most practical pur-
poses, the echo-state property can be easily satisfied by merely
ensuring that the reservoir weight matrix W is contractive, i.e., by
scaling the reservoir weight matrix so that its spectral radius rðWÞ
(that is, its largest absolute eigenvalue) is less than one [18]. Indeed,
this condition has been proved to be sufficient in the practical
applications of ESNs; nevertheless, various researchers have also
provided more rigorous global asymptotic stability conditions, pro-
viding better theoretical guarantees for ESNs to perform well on a
physical system (see, e.g. [19]). It has been shown that the maximum
possible short-term memory length of an ESN reservoir comprising N

neurons is N time points [3].

2.2. Dirichlet process models

Dirichlet process (DP) models were first introduced by Fergu-
son [20]. A DP is characterized by a base distribution G0 and a
positive scalar a, usually referred to as the innovation parameter,
and is denoted as DPðG0,aÞ. Essentially, a DP is a distribution
placed over a distribution. Let us suppose we randomly draw a
sample distribution G from a DP, and, subsequently, we indepen-
dently draw N random variables fYn

ng
N
n ¼ 1 from G

G9fG0,ag �DPðG0,aÞ ð2Þ

Yn

n9G� G, n¼ 1, . . . ,N ð3Þ

Integrating out G, the joint distribution of the variables fYn

ng
N
n ¼ 1

can be shown to exhibit a clustering effect. Specifically, given the
first N�1 samples of G, fYn

ng
N�1
n ¼ 1, it can be shown that a new

sample Yn

N is either (a) drawn from the base distribution G0 with
probability a=ðaþN�1Þ or (b) is selected from the existing draws,
according to a multinomial allocation, with probabilities propor-
tional to the number of the previous draws with the same
allocation [21]. Let fYcg

K
c ¼ 1 be the set of distinct values taken

by the variables fYn

ng
N�1
n ¼ 1. Denoting as f N�1

c the number of values
in fYn

ng
N�1
n ¼ 1 that equal to Yc , the distribution of Yn

N given fYn

ng
N�1
n ¼ 1

can be shown to be of the form [21]

pðYn

N9fY
n

ng
N�1
n ¼ 1,G0,aÞ ¼ a

aþN�1
G0þ

XK

c ¼ 1

f N�1
c

aþN�1
dYc

ð4Þ

where dYc
denotes the distribution concentrated at a single point

Yc. These results illustrate two key properties of the DP scheme.
First, the innovation parameter a plays a key-role in determining
the number of distinct parameter values. A larger a induces a
higher tendency of drawing new parameters from the base
distribution G0; indeed, as a-1 we get G-G0. On the contrary,
as a-0 all fYng

N
n ¼ 1 tend to cluster to a single random variable.

Second, the more often a parameter is shared, the more likely it
will be shared in the future.

A characterization of the (unconditional) distribution of the
random variable G drawn from a Dirichlet process DPðG0,aÞ is
provided by the stick-breaking construction of Sethuraman [22].
Consider two infinite collections of independent random variables
v¼ ðvcÞ

1
c ¼ 1, fYcg

1
c ¼ 1, where the vc are drawn from the Beta

distribution Betað1,aÞ, and the Yc are independently drawn from
the base distribution G0. The stick-breaking representation of G is
then given by [22]

G¼
X1
c ¼ 1

pcðvÞdYc
ð5Þ
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