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In this paper, a novel supervised dimensionality reduction (DR) algorithm called graph- based Fisher

analysis (GbFA) is proposed. More specifically, we redefine the intrinsic and penalty graph and trade off

the importance degrees of the same-class points to the intrinsic graph and the importance degrees of

the not-same-class points to the penalty graph by a strictly monotone decreasing function; then the

novel feature extraction criterion based on the intrinsic and penalty graph is applied. For the non-

linearly separable problems, we study the kernel extensions of GbFA with respect to positive definite

kernels and indefinite kernels, respectively. In addition, experiments are provided for analyzing and

illustrating our results.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Techniques for dimensionality reduction in supervised or
unsupervised learning tasks have attracted much attention in
computer vision and pattern recognition. Among them, principal
component analysis (PCA) [1] and linear discriminant analysis
(LDA) [2] are two most popular linear subspace learning methods.
PCA is an unsupervised learning algorithm, which performs
dimensionality reduction by projecting the original m-dimen-
sional data on to the l ðl5mÞ-dimensional linear subspace
spanned by the leading eigenvectors of the data’s covariance
matrix. While LDA is a supervised learning algorithm, it searches
the projection axes on which the not-same-class points are far
from each other while requiring the same-class points to be close
to each other. Therefore, LDA encodes discriminating information
in a linearly separable space. However a drawback of LDA is that it
cannot be applied when the scatter matrix Sw or St is singular due
to the small sample size problems. In the past, many LDA
extensions have been developed to deal with this problem, such
as, Pseudo-inverse LDA (PLDA) [3], regular LDA (RLDA) [4],
Penalized discriminant analysis (PDA) [5], LDA/GSVD [6], LDA/
QR [7], orthogonal LDA (OLDA) [8], null space LDA (NLDA) [9],
direct-LDA(D-LDA) [10], CLDA [11] and two-stage LDA [12].
Despite the LDA-based algorithms having many applications,

their effectiveness is still limited because the number of the
available projection directions is lower than the class number.
Furthermore, the LDA-based algorithms are proposed based upon
the data approximately obeying a Gaussian distribution, which
cannot always be satisfied in the real-world applications.

Recently, a number of graph-based DR learning methods have
been successfully applied and became important methodologies
in machine learning and pattern recognition fields. Compared
with PCA and LDA, the graph-based algorithms need not assume
that the data obeys a Gaussian distribution, so they are more
general for discriminant analysis. Some known graph-based
algorithms are locality preserving projection (LPP) [13], local
linear embedding (LLE) [14], local Fisher discriminant analysis
(LFDA) [15], Laplacianfaces [16] and unsupervised discriminant
projection (UDP) [17], Marginal Fisher analysis (MFA) [18], Linear
discriminant projection (LDP) [19], Graph-optimized locality pre-
serving projections (GoLPP) [20] and Sparsity preserving discri-
minant analysis (SPDA) [21].

Despite the success of the graph-based embedding dimension-
ality reduction techniques, they still suffer from such issues as:

(1) The current learning algorithms in Refs. [13–16,18,20,21] are
all based on the characterization of ‘locality’. The local
quantity suffices for modeling a single manifold, but does
not suffice for modeling multi-manifold cases;

(2) From the definition of the local and nonlocal scatter matrices
in Ref. [17], it disguises a discriminant disposal on the data in
question, that is, the samples in the local neighborhood are
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deemed the same-class ones, while the samples in the
nonlocal region are deemed the not-same-class ones. How-
ever, the so-called same-class or not-same-class is not gen-
erally identical to the true class information. Some sketch
examples can be found in Ref. [22], meanwhile, the same
question exists in Refs. [13,14,20,21];

(3) The local neighborhood of each sample in computing the
adjacency matrix should adaptively be determined, since the
local structure of each sample usually is different and
depends on the data distribution. Therefore, they should not
artificially be determined by the same criterion for all samples
as in Refs. [13,14,16–19]. Not only does this ignore the actual
data distribution, but also brings the difficulty of parameter
selection.

Inspired by ideas in Refs. [2,15,17,19–22], in this paper, we will
develop a novel supervised DR algorithm, called the Graph-based
Fisher Analysis (GbFA), to overcome the limitation of [2,15,
17–19]. In contrast to [1–19], GbFA has the following advantages:
(1) there is no assumption that the data obeys a Gaussian distribu-
tion, thus it is more general for discriminant analysis; (2) The
intrinsic graph based on the same-class samples and the penalty
graph based on the not-same-class samples are redefined, so GbFA
encodes the discriminating information; (3) It adaptively trades off
the importance degrees of the same-class samples to the intrinsic
graph and the importance degrees of the not-same-class samples to
the penalty graph by a strictly monotone decreasing function which
encodes the distributing information of the samples as well;
(4) Maximizing the criterion function of GbFA will make the original
neighbor same-class samples much closer in the output space while
pushing apart the original neighbor not-same-class samples in the
output space, thus GbFA criterion will enhance the classification
result of the data set. Moreover, based on the kernel trick in
Refs. [23–26], we will extend the kernel GbFA model with positive
definite kernels and indefinite kernels for the non-linearly separ-
able problems, respectively. Furthermore, in contrast to Refs.
[18,20,21], we redefine the adjacency matrix in the feature space,
so it will be more reasonable in the real-world applications.

The organization of this paper is as follows. We present the
GbFA criterion in Section 2. We discuss the connections between
GbFA and other graph embedding DR algorithms in Section 3.
We introduce the kernel GbFA with respect to positive definite
kernels and indefinite kernels in Section 4. In Section 5, experi-
ments are presented to demonstrate the effectiveness of GbFA
and the kernel GbFA. Conclusions are summarized in Section 6.

2. Graph-based Fisher analysis

In this section, we introduce the basic ideas of GbFA and its
algorithm derivation under the supervised scenarios. Supervised
dimensionality reduction approaches aim to map the original
data space to a lower dimensional space and preserve the class
discriminatory information from the class labels.

2.1. Basic ideas

In order to improve the classification result, we want to
construct an embedding map V ¼ ½v1,. . .,vl�ARm�l such that the
distance between the same-class samples is reduced in the output
space while simultaneously the neighbor not-same-class samples
are pushed apart to avoid the large overlaps of neighbor classes
in the output space. For the given pattern samples data set
T ¼ fðx1,y1Þ,. . .,ðxn,ynÞgAX � Y ,X ¼ ½x1,. . .,xn�ARm�n is the input
data matrix (or vertices set) and Y ¼ fC1,. . .,Ccg is the class label
set. According to spectral graph theory [27], we attempt to

construct an intrinsic graph G¼ fX,Wg and a penalty graph
G0 ¼ fX,W 0

g, where WARn�n and W 0ARn�n are the adjacency
matrices. With the embedding map V, the intra-class compactness
can be characterized from the intrinsic graph by the term

Gc ¼
Xn

i ¼ 1

Xn

j ¼ 1

:VT xi�VT xj:
2
Wij, ð1Þ

where

Wij ¼
expf�:xi�xj:

2
=tg, if yi ¼ yj ¼ Ck,k¼ 1,. . .,c,ðtARÞ

0, if yiayj,

8<
: ð2Þ

and the interclass separability is characterized from the penalty
graph by the term

Gp ¼
Xn

i ¼ 1

Xn

j ¼ 1

:VT xi�VT xj:
2
W 0

ij, ð3Þ

where

W 0
ij ¼

expf�:xi�xj:
2
=tg, if yiayj,ðtARÞ

0, if yi ¼ yj:

8<
: ð4Þ

From the definition of Wij and W 0
ij, we know that

expf�:xi�xj:
2
=tg is a strictly monotone decreasing function with

respect to the distance between two variables xi and xj. Wij

indicates the importance degree of xi and xj (in the same-class)
to the intrinsic graph, the smaller the distance :xi�xj:

2
is, the

larger the importance degree would be; otherwise, the impor-
tance degree is zero. Similarly, W 0

ij implies the importance degree
of xi and xj (in the not-same-class) to the penalty graph, the
smaller the distance :xi�xj:

2
is, the larger the importance degree

would be; otherwise, the importance degree is zero.
To gain more insight into Eq. (1), we rewrite the square of the

norm in the form of the matrix trace

Gc ¼
Xn

i ¼ 1

Xn

j ¼ 1

:VT xi�VT xj:
2
Wij

¼
Xn

i ¼ 1

Xn

j ¼ 1

trfðVT xi�VT xjÞðV
T xi�VT xjÞ

T
gWij

¼
Xn

i ¼ 1

Xn

j ¼ 1

trfVT
ðxi�xjÞðxi�xjÞ

T VgWij: ð5Þ

Since the operation of trace is linear and Wij is a scalar, Eq. (5)
can be easily simplified as

Gc ¼ tr VT
Xn

i ¼ 1

Xn

j ¼ 1

ðxi�xjÞWijðxi�xjÞ
T

0
@

1
AV

8<
:

9=
;

¼ trfVT
ð2XDXT

�2XWXT
ÞVg

¼ 2trfVT XðD�WÞXT Vg

¼ 2trfVT XLXT Vg, ð6Þ

where D¼ diagðD11,. . .,DnnÞ, Dii ¼
Pn

j ¼ 1 Wijði¼ 1,. . .,nÞ and L¼

D�W is called the Laplacian matrix. Similar to Eqs. (5) and (6),
we can simplify Eq. (3) as follows:

Gp ¼ 2trfVT XðD0�W 0
ÞXT Vg ¼ 2trfVT XL0XT Vg, ð7Þ

where D0 ¼ diagðD011,. . .,D0nnÞ,D
0
ii ¼

Pn
j ¼ 1 W 0

ijði¼ 1,. . .,nÞ and L0 ¼

D0�W 0. In order to enhance the classification result, we try to
find the projection axes which will draw the same-class samples
closer together while simultaneously making the not-same-class
samples distant from each other, which means that the desirable
projection axes should minimize the intrinsic graph term Gc,
meanwhile maximize the penalty graph term Gp. So, we can
obtain just such projection axes by maximizing the following
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