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Institut EGID, Université Michel de Montaigne – Bordeaux 3, 1, Allée Daguin, 33607 Pessac Cedex, France

a r t i c l e i n f o

Article history:

Received 10 November 2009

Received in revised form

23 June 2011

Accepted 29 October 2011
Available online 9 November 2011

Keywords:

Orthogonal polynomials

Hermite polynomials

Orthonormal moments

Gaussian–Hermite moments

Image reconstruction

a b s t r a c t

The problem of image reconstruction from its statistical moments is particularly interesting to

researchers in the domain of image processing and pattern recognition. Compared to geometric

moments, the orthogonal moments offer the ability to recover much more easily the image due to their

orthogonality, which allows reducing greatly the complexity of computation in the phase of

reconstruction. Since the 1980s, various orthogonal moments, such as Legendre moments, Zernike

moments and discrete Tchebichef moments have been introduced early or late to image reconstruction.

In this paper, another set of orthonormal moments, the Gaussian–Hermite moments, based on Hermite

polynomials modulated by a Gaussian envelope, is proposed to be used for image reconstruction.

Especially, the paper’s focus is on the determination of the optimal scale parameter and the

improvement of the reconstruction result by a post-processing which make Gaussian–Hermite

moments be useful and comparable with other moments for image reconstruction. The algorithms

for computing the values of the basis functions, moment computation and image reconstruction are

also given in the paper, as well as a brief discussion on the computational complexity. The experimental

results and error analysis by comparison with other moments show a good performance of this new

approach.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Today, in the image analysis, image storage and image trans-
mission fields, there is a large requirement for image character-
ization, reconstruction and compression. The theory of statistical
moments provides an interesting and useful alternative to series
expansions for representing a real bounded function, so moments
are widely used as one of the most common tools in a number of
applications, especially in different fields of digital image proces-
sing and pattern recognition.

Historically, Hu has first introduced moment invariants from
methods of algebraic invariants [1]. This is a set of seven non-
linear combinations of geometric moments proposed as image
invariant global features, which are translation, rotation and scale
independent. Hu’s moment invariants are widely used for pattern
description and recognition. Theoretically, the original function
can be recovered without error using an infinite set of all its
moments. So image reconstruction using its moments has become
a challenging problem. Unfortunately, the geometric moments are
not orthogonal, from which image reconstruction is practically

quite difficult, although it is realizable [2,3]. Therefore, it is preferred
to use the orthogonal moments defined in terms of a set of
orthogonal basis functions. The first considerable work on this
subject was published in 1980 by Teague, who had initially intro-
duced Legendre moments and Zernike moments based, respectively,
on continuous Legendre and Zernike polynomials [4]. Some other
orthogonal moments were then proposed for image analysis.

Image reconstruction from the orthogonal moments is much
easier than that from non-orthogonal moments. In fact, an image
could be reconstructed as a simple summation of orthogonal
polynomials, weighted by the moment values. However, there are
two main sources of error involved in practical implementation:
the discrete approximation of the continuous integral [5] and the
transformation of the image coordinate system into the domain of
polynomials [6]. The orthogonality of continuous basis functions
will be destroyed because of numerical approximations. That is why
the reconstruction is never perfect from the continuous orthogonal
moments. In order to resolve this problem, the discrete orthogonal
moments begin to be used since the beginning of the century.
Mukundan proposed to use a set of discrete orthogonal moments
based on the Tchebichef polynomials in a discrete variable for
image reconstruction and he also offered the efficient method
for their computation [7–9]. On the same principle, discrete
Krawtchouk polynomials and other discrete orthogonal polynomials
are successively suggested to be the basis functions for defining the
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discrete orthogonal moments, of which the implementation does
not involve any numerical approximation [10–12]. Compared with
the continuous orthogonal moments, the discretization error does
not play a role in the reconstruction from the discrete orthogonal
moments.

The principal goal of image reconstruction studies, especially
the image reconstruction from only a limited number of its
moments, is to resolve some practical problems such as that
mentioned at the beginning of this section. Although the image
can be perfectly reconstructed from all its discrete moments of a
certain family as discrete Tchebichef one, yet it is not sure that the
result from a limited number set is always the best. However, a
higher quality of image reconstruction only from a limited
number of moments makes this technique have a significant
applicability.

In this paper we still focus our attention on image reconstruc-
tion from the continuous orthogonal moments. Another orthogo-
nal moment named Gaussian–Hermite moment is proposed to be
employed in image analysis [13], which has firstly been intro-
duced to the astrophysics field in 1993 [14]. Gaussian–Hermite
moment basis functions of different orders have different number
of zero-crossings of which the distribution is more equidistant
than other orthogonal moment functions. More specifically, its
zero-crossings are distributed a little more densely in the vicinity
of the origin than in the peripheral regions. This property is very
important for image reconstruction resolution. Since their basis
functions are much more smoothed, Gaussian–Hermite moments
are thus less sensitive to noise. Moreover, the discretiza-
tion produces less influence on the orthogonality than that of
other continuous moments. So the reconstruction result from
Gaussian–Hermite moments is much better than that from the
other continuous orthogonal moments as Legendre moments and
even than that from discrete Tchebichef moments. Our first work
for image reconstruction from its Gaussian–Hermite moments is
reported in Refs. [15,16]. The innovation of this paper includes
two important points: how to determine the best scale parameter
and how to improve the reconstruction results, both automati-
cally. It is the solution of these two questions that makes image
reconstruction from its Gaussian–Hermite moments become practi-
cally applicable and comparable with other orthogonal moments,
even the discrete ones.

The paper is organized as follows: The general introduction of
Gaussian–Hermite polynomials and their corresponding moments
are defined in Section 2. Some aspects of computational complexity
are given in the same section. Section 3 presents the discussion on
the influence which the discrete implementation brings to ortho-
normality of the basis functions and how to estimate the best
scale parameter. In Section 4, a normalization is suggested to be
performed as post-processing in order to improve reconstruction
results. Section 5 shows the experimental results with binary as well
as gray-level images. The comparison in image reconstruction with
different orthogonal moments is also given in this section. The paper
ends with a brief conclusion and some remarks, which are presented
in Section 6.

2. Gaussian–Hermite moments and image reconstruction

2.1. Hermite polynomials

Besides Legendre, Zernike, Laguerre and Tchebichef polynomials,
another family of orthogonal polynomials is that of the Hermite
polynomials Hn(x), which are defined over the domain (�N,N):

HnðxÞ ¼ ð�1Þn expðx2Þ
dn

dxn
expð�x2Þ: ð1Þ

These polynomials are orthogonal with respect to the weight
function expð�x2Þ. Their orthogonality is presented byZ 1
�1

expð�x2ÞHmðxÞHnðxÞdx¼ 2nn!
ffiffiffiffi
p
p

dmn, ð2Þ

where dmn is the Kronecker delta and

dmn ¼
0, man,

1, m¼ n

(
ð3Þ

Like other orthogonal polynomials that can be derived by the
recurrence formula, Hermite polynomial can also be calculated by
the following equation:

Hnþ1ðxÞ ¼ 2xHnðxÞ�2nHn�1ðxÞ for nZ1, ð4Þ

With H0(x)¼1 and H1(x)¼2x. It should be noted that Hermite
polynomials are orthogonal but not orthonormal. In order to
make them orthonormal we introduce the orthonormal Hermite
polynomials which are the normalized versions of Hermite poly-
nomials. The orthonormal Hermite polynomials, or Gaussian–
Hermite polynomials, can be written in the following form:

ĤnðxÞ ¼ ð2
nn!

ffiffiffiffi
p
p
Þ
�1=2 expð�x2=2ÞHnðxÞ, ð5Þ

which keeps the orthonormalityZ 1
�1

ĤmðxÞĤnðxÞdx¼ dmn: ð6Þ

2.2. Gaussian–Hermite moments

In Eq. (5), the factor expð�x2=2Þ represents a Gaussian envel-
ope. Replacing x by (x/s) to adjust the scale of Gaussian–Hermite
polynomials and meanwhile making it satisfy Eq. (6), we can
obtain the generalized Gaussian–Hermite polynomials with the
scale parameter s which in fact is the standard deviation for the
Gaussian envelope:

Ĥnðx=sÞ ¼ ð2nn!
ffiffiffiffi
p
p

sÞ�1=2 expð�x2=2s2ÞHnðx=sÞ: ð7Þ

Obviously Eq. (7) keeps the orthogonality because it satisfies
the following equation:Z 1
�1

Ĥmðx=sÞĤnðx=sÞdx¼ dmn: ð8Þ

By using the above Gaussian–Hermite polynomials as basis
functions, Gaussian–Hermite moments of order (m,n) for a contin-
uous two-dimensional function can be defined over the domain
(�Nrx, yrN) as follows:

Zmn ¼

Z 1
�1

Z 1
�1

Ĥmðx=sÞĤnðy=sÞf ðx,yÞdxdy, ð9Þ

where f(x,y) is the continuous two-dimensional image function.
Because the nth degree Hermite polynomial Hn(x) has n different

real roots over the interval (�N, N), it is easy to demonstrate that
the basis function of Gaussian–Hermite moment Ĥnðx=sÞ has also n

different real roots. Therefore, the nth order Gaussian–Hermite basis
function will change its sign n times. In the frequency domain,
Gaussian–Hermite basis functions have the same behavior of that in
the spatial domain and comprise more and more oscillations when
the order increases [17]. They contain thus more and more high
frequencies. Moreover, from the viewpoint of spectral analysis, they
can be looked as ‘‘quasi-band limited’’ functions. The Fourier trans-
form of Ĥnðx=sÞ is given as follows:

F ½Ĥnðx=sÞ� ¼ ð�iÞn½s=ð2nn!
ffiffiffiffi
p
p
Þ�1=2

�exp½�ð2psf Þ2=2�Hnð2psf Þ, ð10Þ

where F ½ � is the Fourier transform operator and i¼
ffiffiffiffiffiffiffi
�1
p

. Fig. 1
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