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a b s t r a c t

In this paper, a manifold learning based method named local maximal margin discriminant embedding
(LMMDE) is developed for feature extraction. The proposed algorithm LMMDE and other manifold learn-
ing based approaches have a point in common that the locality is preserved. Moreover, LMMDE takes con-
sideration of intra-class compactness and inter-class separability of samples lying in each manifold. More
concretely, for each data point, it pulls its neighboring data points with the same class label towards it as
near as possible, while simultaneously pushing its neighboring data points with different class labels
away from it as far as possible under the constraint of locality preserving. Compared to most of the
up-to-date manifold learning based methods, this trick makes contribution to pattern classification from
two aspects. On the one hand, the local structure in each manifold is still kept in the embedding space;
one the other hand, the discriminant information in each manifold can be explored. Experimental results
on the ORL, Yale and FERET face databases show the effectiveness of the proposed method.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Face recognition has attracted wide attention of the researchers
in the fields of pattern recognition and computer vision because of
its immense application potential. Many face recognition methods
have been developed over the past few decades. One of the most
successful and well-studied techniques to face recognition is the
appearance-based method. In an appearance-based technique, a
two-dimensional face image of size w by h pixels is represented
by a vector in a w � h-dimensional space. In practice, however,
these w � h-dimensional spaces are too large to allow robust and
fast recognition. A common way to attempt to resolve this problem
is to use dimensionality reduction techniques. Two of the most
popular dimensionality reduction methods are principal compo-
nent analysis (PCA) [1] and linear discriminant analysis (LDA) [2].

PCA is a classical dimensionality reduction and data representa-
tion technique widely used in pattern classification and visualiza-
tion tasks. PCA is an unsupervised method, which aims to find a
linear mapping that preserves the total variance by maximizing
the trace of feature variance. The optimal mapping is the leading
eigenvectors corresponding to the largest eigenvalues of the
covariance matrix for data of all classes.

LDA produces an optimally discriminative projection for certain
cases. LDA searches for the transformation that maximizes the be-
tween-class scatter and at the same time minimizes the within-
class scatter. Different from PCA which is completely unsupervised
with regard to the class information of the data, LDA takes full con-
sideration of the class labels and it is generally believed that LDA is
able to enhance class separability. Despite the success of the LDA
algorithm in many applications, its effectiveness is still limited
since, in theory, the number of available projection directions is
lower than the class number. Furthermore, class discrimination
in LDA is based upon within-class and between-class scatters,
which is optimal only in cases where the data of each class is
approximately Gaussian distributed, a property that cannot always
be satisfied in real-world applications. At the same time, LDA can-
not be applied directly to small sample size problem [3] because
the within-class scatter matrix is singular [2]. To avoid the singu-
larity problem of LDA, Li et al. [4] used the difference of both be-
tween-class scatter and within-class scatter as discriminant
criterion, called maximum margin criterion (MMC). MMC has the
advantages of effectiveness and simplicity.

Recent studies [5–7] have shown that the high-dimensional
data possibly resides on a nonlinear sub-manifold. However, both
PCA and LDA effectively see only the global Euclidean structure.
When they are applied to face recognition, they fail to discover
the underlying structure, if the face images lie on a nonlinear
sub-manifold hidden in the image space. Some nonlinear

1047-3203/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jvcir.2013.11.007

⇑ Corresponding author.
E-mail address: huangpu3355@163.com (P. Huang).

J. Vis. Commun. Image R. 25 (2014) 296–305

Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier .com/ locate / jvc i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvcir.2013.11.007&domain=pdf
http://dx.doi.org/10.1016/j.jvcir.2013.11.007
mailto:huangpu3355@163.com
http://dx.doi.org/10.1016/j.jvcir.2013.11.007
http://www.sciencedirect.com/science/journal/10473203
http://www.elsevier.com/locate/jvci


techniques have been proposed to discover the nonlinear structure
of the manifold. The basic assumption of manifold learning is that
the input data lie on a smooth low-dimensional manifold. Each
manifold learning based method attempts to preserve a different
geometrical property of the underlying manifold. The representa-
tive ones include Isomap [5], LLE [6], Laplacian Eigenmap [7] and
local tangent space alignment (LSTA) [8]. These nonlinear methods
do yield impressive results on some benchmark artificial data sets.
However, they yield maps that defined only on the training data
points and how to evaluate the maps on novel test data points re-
mains unclear. To overcome this limitation, He et al. extended
Laplacian Eigenmap to its linearized version, i.e. locality preserving
projection (LPP) [9–13] for an explicit map. LPP attempts to con-
struct a nearest neighbor graph and then evaluate the low-dimen-
sional embedding to best preserve local structure of the data set.

Although LPP is effective in many domains, it is unsupervised
and its unsupervised nature restricts its discriminating capability.
To consider class label information in LPP, several supervised LPP
methods [14–21] have been developed. Local discriminant embed-
ding (LDE) [15] and marginal fisher analysis (MFA) [16], whose
objective functions are very similar, can also be viewed as super-
vised LPP methods. This is because their training phases both ex-
ploit the class label information of samples. They are derived by
using a motivation partially similar to LPP and each of them is
based on an eigen-equation formally similar to the eigen-equation
of LPP. On the other hand, since LDE and MFA partially borrow the
idea of discriminant analysis and try to produce satisfactory linear
separability, their ideas are also somewhat different from the idea
of preserving the local structure of LPP. LDE and MFA can be
viewed as two combinations of the locality preserving technique
and the linear discriminant analysis [22]. Compared with LDA, both
LDE and MFA do not depend on the assumption that the data of
each class is Gaussian distributed and can obtain more available
projection directions and better characterize the separability of dif-
ferent classes.

The purpose of LPP is to preserve the proximity relationship of
the input data. In LPP, by applying k nearest neighbor (k-NN) crite-
rion, any point and its k nearest neighbors are viewed as located on a
super-plane, where all the descriptions in linear space can be per-
formed. A common problem with the classical LPP and several
supervised LPP methods [14,17,18] is that they might not necessar-
ily discover the most discriminative manifold for pattern classifica-
tion tasks because the manifold learning is originally modeled based
on a characterization of ‘‘locality’’, a model that has no direct con-
nection to classification. This is unproblematic for existing LPP algo-
rithms as they seek to model a simple manifold, for example, to
recover an embedding of one person’s face images. In face recogni-
tion each person forms his or her own manifold in the feature space
[23]. If one person’s face images do exist on a manifold, different
persons’ face images could lie on different manifolds. If the images
needed to be classified reside on multi-manifolds and two or more
models have a common axis, then the locality preserving algorithms
of manifold learning may result in overlapped embedding belonging
to different classes because to recognize faces it would be necessary
to distinguish between images from different manifolds. This prob-
lem is referred to as ‘‘overlearning of locality’’ [24].

In order to solve the problem of ‘‘overlearning of locality’’, Yang
et al. proposed an unsupervised discriminant projection (UDP) [25]
method, which can be viewed as simplified LPP on the assumption
that the local density is uniform [26]. In the proposed method,
locality and non-locality are discussed in detail, where locality
means the sum of the squared distance between the points in k
nearest neighbors, and the non-locality denotes the sum of the
squared distance between two points not belonging to any k near-
est neighbors. In order to achieve a discriminative map, UDP aims
to find a linear transformation that maximizes the ratio of the

non-locality to the locality. In the literature [27], there is another
algorithm named locally preserving and globally discriminant pro-
jection with prior information (LPGDP) introduced to address this
problem. The LPGDP method utilizes prior misclassification rate
of between-class in the training data for the global discriminant
measure while using class labels for preserving locality. Besides,
Li et al. proposed a linear multi-manifolds learning based approach
called constrained maximum variance mapping (CMVM) [28].
CMVM aims at globally maximizing the distances between differ-
ent manifolds. After the local scatters have been characterized,
the CMVM algorithm focuses on developing a linear transforma-
tion that maximizes the dissimilarities between all the manifolds
under the constraint of locality preserving.

As discussed above, when LPP is used to map the high-dimen-
sional data into a low-dimensional feature space, it may produce
high between-class overlaps because of the ‘‘overlearning of local-
ity’’. To solve this problem, the methods including UDP, LPGDP and
CMVM seek to find a transformation that separates different man-
ifolds after the local structure has been characterized. It is unprob-
lematic for these methods to effectively separate different classes
when the data distributed on a manifold have the same label. How-
ever, in practice, the local scatter is usually constructed according
to the k-NN criterion, which will bring another problem. It is that,
when there is large variation within the same class, the within-
class variation may be larger than the between-class variation,
which means that the neighbor relationship measured by the k-
NN criterion may be distorted. In other words, data samples resid-
ing on a manifold possibly have different labels. In this case, these
methods may not work well because of their common assumption
that the data distributed on a manifold have the same label.

In this paper, we propose an effective supervised manifold
learning algorithm, called local maximal margin discriminant
embedding (LMMDE) for feature extraction and recognition. The
proposed algorithm LMMDE incorporates LPP and MMC for data
analysis. Similar to MFA, LMMDE characterizes intra-class com-
pactness and inter-class separability to maximize the margins be-
tween different classes. One difference between MFA and the
proposed method lies that MFA neglects the local structure based
on the overall samples which may be helpful for classification. In
addition, both CMVM and LMMDE have the common purpose that
is to take class label information into account based on the prop-
erty of locality preserving, but they are essentially different be-
cause: (1) CMVM is originally designed to separate different
manifolds based on the assumption that the data distributed on
a manifold have the same label, while LMMDE is designed to re-
duce the between-class overlaps based on the assumption that
the data distributed on a manifold may have different labels and
(2) CMVM characterizes only the inter-class separability in a global
way, while LMMDE measures both the inter-class separability and
the intra-class compactness in a local way like MFA.

The rest of this paper is structured as follows: In Section 2, the
PCA, LDA, LPP are briefly reviewed. Section 3 describes the pro-
posed algorithm in detail. In Section 4 the proposed algorithm is
examined on three data sets and the experimental results are of-
fered. Section 5 finishes this paper with some conclusions.

2. Outline of PCA, LDA, LPP

Let us consider a set of n samples {x1, . . .,xn} takes values in an
N-dimensional image space, and assume that each image belongs
to one of C classes. Let us also consider a linear transformation that
maps the original N-dimensional space into a d-dimensional fea-
ture space, where N > d. The new feature vectors in the d-dimen-
sional space are defined by the following linear transformation:

yk ¼ ATxk; k ¼ 1; . . . ;n ð1Þ
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