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a b s t r a c t

The problem of multiplicative noise removal has been widely studied recently, but most models focus on
the unconstrained problems. These models require knowing the prior level of noise beforehand, however,
the information is not obtained in some case and the regularization parameters are not easy to be
adjusted. Thus, in the paper, we mainly study an optimization problem with total variation constraint,
and propose two new denoising algorithms which compute the projection on the set of images whose
total variation is bounded by a constant. In the first algorithm, we firstly give the dual formula of our
model, then compute the dual problem using alternating direction method of multipliers. Experimental
results show that our method is simple and efficient to filter out the multiplicative noise when the prior
of noise is unknown.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Image denoising is one of the fundamental problems in the im-
age processing and computer version fields. A real recorded image
may be distorted by many expected or unexpected random factors,
of which random noise is an unavoidable one. Most of the litera-
tures deal with the additive noise model: given an original image
f, it is assumed that it has been corrupted by the additive noise
g. The goal is then to recover f from the data f0 = f + g. Many ap-
proaches have been proposed for this problem [1–3].

In this paper, we are concerned with the issue of multiplicative
noise removal. Specifically, we are interested in removing the
Gamma distributed multiplicative noise from a contaminated im-
age. The multiplicative model is

f0 ¼ fg; ð1Þ

where f0 > 0 is the observed image, f > 0 is the original image, and g
is the noise which follows a Gamma Law with mean one and its
probability density function is given by

gðgÞ ¼ MM

CðMÞg
M�1expð�MgÞ1fg>¼0g: ð2Þ

where M is the number of looks (in general, an integer coefficient),
and C( � ) is a Gamma function. Multiplicative noise is one of the
more complex image noise models. It is signal independent, non-
Gaussian, and spatially dependent. Hence, multiplicative noise

removal is a very challenging problem compared with additive
Gaussian noise.

Multiplicative noise removal methods have been discussed in
many reports. Popular methods include the Lee method [4], multi-
scale shrinkage and Bayesian MAP estimator methods for the log-
data [5–7], various variational methods [8–18], and the augmented
Lagrangian approach [19]. In particular, among the variational
methods, the total variation (TV) based methods have become very
popular in the recent few years. The first TV based multiplicative
noise removal model was presented by Rudin et al. [16], which
used a constrained optimization approach with two Lagrange mul-
tipliers. Following the maximum a posteriori (MAP) estimator for
multiplicative Gamma noise, Aubert and Aujol [9] introduced a
non-convex model

min
f2BVðXÞ

kfkTV þ a1

Z
X

log f þ f0

f

� �
dx

� �
; ð3Þ

where kfkTV =
R

X|rf|dx is the regularization term,
R

X log f þ f0
f

� �
dx

is the data fidelity term, and a1 is the regularization parameter.
Although the above two models have obtained some relatively

good results, but their corresponding algorithms have a slower
rate of convergence because of the nonconvexity of their fidelity
terms. In order to overcome this drawback, recently, Steidl and
Teuber [8] introduced a new variational restoration model con-
sisting of the I-divergence as data fidelity term and the TV as
regularizer

f ¼ arg min
f2BVðXÞ; f>0

kkfkTV þ
Z

X
f � f0 þ f0 log

f0

f
dx

� �
; ð4Þ
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where the data fidelity term
R

X f � f0 þ f0 log f0
f dx is strictly convex, k

is a regularization parameter. The authors computed the minimizer
of Eq. (4) by applying the Douglas–Rachford splitting techniques,
resp. alternating split Bregman method, combined with an efficient
algorithm to solve the involved nonlinear systems of equations (see
the details in [8]). However, the regularization parameter k is re-
lated to the level of noise. If the prior of noise is not clear for us,
it is not easy to adjust the parameter k for achieving the better res-
toration results.

In this paper, we mainly focus on removing the multiplicative
noise from the image f0 by solving the following optimization
problem with a bounded TV constraint

min
jjf jjTV6s;f>0

Z
X

f � f0 þ f0 log
f0

f
dx; where s < jjf0jjTV : ð5Þ

Compared with Eq. (4), the model (5) has an important advan-
tage: parameter s has a clear meaning (it is proportional to the TV
of f) and is much easier to set than the parameter k which is deter-
mined by the noise level r, so the model (5) might be preferable
over Eq. (4) when more is known about the TV estimation s than
the noise level r. The problem with this kind of constrain for addi-
tive noise was recently studied in [20]. To the best of our knowl-
edge, the multiplicative noise removal problem with this
constrain has never been studied before.

The rest of the paper is arranged as follows. In Section 2, we
introduce some basic tools that will be used in the paper. In Sec-
tion 3, the proposed model (5) is discussed in detail and one dual
algorithm is given. In Section 4, we give another algorithm based
on split and duality for the proposed model. In Section 5, we give
some numerical results to show the effectiveness of our method.
Finally, conclusions are given in Section 6.

2. Preliminaries

Let X be a two-dimensional bounded open domain of R2 with
Lipschitz boundary, then an image can be interpreted as a real
function defined on X. In this section, we first review some basic
definitions and notations that will be used in this paper.

Definition 2.1. Let Du be the distributional derivative of u, We
define BV(X), the space of functions of bounded variation, as

BVðXÞ ¼ u 2 L1ðXÞ;
Z

X
jDuj <1

� �
:

Definition 2.2. Let C be a nonempty convex set. The indicator
function vC of C is

vCðpÞ ¼
0; if p 2 C;

þ1; otherwise:

�

Definition 2.3. Let u :H ? R be a proper, lower-semicontinuous
and convex function, where H is a Hilbert space. Then, for every
q 2 h, the function h#/ðhÞ þ kq� hk2

2=2, for h 2 H, achieves its inf-
imum at a unique point denoted by

proxc/ðqÞ ¼ arg min
h

1
2
kh� qk2

2 þ c/ðhÞ
� �

;

where c is a constant value.
In the discrete case, an image f of N = n � n pixels can be seen

as a vector in RN. We use k � k2
2 to denote the norm induced

by the inner product h�,�i in RN, and define kfk1 ¼ maxi;jjf ði; jÞj.
Let X = RN � RN be the space of vector fields with the inner
product

hu; miX ¼
Xn

i¼1

Xn

j¼1

u1ði; jÞm1ði; jÞ þ u2ði; jÞm2ði; jÞ; for 8 u; m 2 X;

where u = (u1, u2), v = (v1, v2). The l1 and l1 norms of a vector field
u = (u1, u2) 2 X are respectively

kuk1 ¼
Xn

i¼1

Xn

j¼1

juði; jÞj and kuk1 ¼max
i;j
juði; jÞj;

where juði; jÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1ði; jÞ2 þ u2ði; jÞ2

q
. The discrete gradient of f 2 RN

is defined as rf(i, j) = (rxf(i, j),ryf(i, j)) 2 X, with

rxf ði; jÞ ¼
f ðiþ 1; jÞ � f ði; jÞ; if 1 6 i < n;
0; otherwise;

�

ryf ði; jÞ ¼
f ði; jþ 1Þ � f ði; jÞ; if 1 6 j < n;

0; otherwise:

�

The discrete total variation of f is kfkTV = krfk1, where the l1 norm of
a vector field in X has been defined above. The adjoint of the gradi-
ent is r⁄ = �div, and the discrete divergence of a vector field
u = (u1, u2) 2 X is div(u) = oxu1 + oyu2, with
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Fig. 1. The denoising results computed with our Algorithm 1.
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