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a b s t r a c t

Local image features are often used to efficiently represent image content. The limited number of types of
features that a local feature extractor responds to might be insufficient to provide a robust image repre-
sentation. To overcome this limitation, we propose a context-aware feature extraction formulated under
an information theoretic framework. The algorithm does not respond to a specific type of features; the
idea is to retrieve complementary features which are relevant within the image context. We empirically
validate the method by investigating the repeatability, the completeness, and the complementarity of
context-aware features on standard benchmarks. In a comparison with strictly local features, we show
that our context-aware features produce more robust image representations. Furthermore, we study
the complementarity between strictly local features and context-aware ones to produce an even more
robust representation.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Local feature detection (or extraction, if we want to use a more
semantically correct term [1]) is a central and extremely active re-
search topic in the fields of computer vision and image analysis.
Reliable solutions to prominent problems such as wide-baseline
stereo matching, content-based image retrieval, object (class) rec-
ognition, and symmetry detection, often make use of local image
features (e.g., [2–7]).

While it is widely accepted that a good local feature extractor
should retrieve distinctive, accurate, and repeatable features against
a wide variety of photometric and geometric transformations, it is
equally valid to claim that these requirements are not always the
most important. In fact, not all tasks require the same properties
from a local feature extractor. We can distinguish three broad cate-
gories of applications according to the required properties [1]. The
first category includes applications in which the semantic meaning
of a particular type of features is exploited. For instance, edge or even
ridge detection can be used to identify blood vessels in medical
images and watercourses or roads in aerial images. Another example
in this category is the use of blob extraction to identify blob-like
organisms in microscopies. A second category includes tasks such
as matching, tracking, and registration, which mainly require dis-
tinctive, repeatable, and accurate features. Finally, a third category

comprises applications such as object (class) recognition, image re-
trieval, scene classification, and image compression. For this cate-
gory, it is crucial that features preserve the most informative
image content (robust image representation), while repeatability
and accuracy are requirements of less importance.

We propose a local feature extractor aimed at providing a robust
image representation. Our algorithm, named Context-Aware Key-
point Extractor (CAKE), represents a new paradigm in local feature
extraction: no a priori assumption is made on the type of structure
to be extracted. It retrieves locations (keypoints) which are represen-
tatives of salient regions within the image context. Two major advan-
tages can be foreseen in the use of such features: the most informative
image content at a global level will be preserved by context-aware
features and an even more complete coverage of the content can be
achieved through the combination of context-aware features and
strictly local ones without inducing a noticeable level of redundancy.

This paper extends our previously published work in [8]. The
extended version contains a more detailed description of the meth-
od as well as a more comprehensive evaluation. We have added the
salient region detector [9] to the comparative study and the com-
plementarity evaluation has been performed on a large data set.
Furthermore, we have included a qualitative evaluation of our con-
text-aware features.

2. Related work

The information provided by the first and second order deriva-
tives has been the basis of diverse algorithms. Local signal changes
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can be summarized by structures such as the structure tensor ma-
trix or the Hessian matrix. Algorithms based on the former were
initially suggested in [10,11]. The trace and the determinant of
the structure tensor matrix are usually taken to define a saliency
measure [12–15].

The seminal studies on linear scale-space representation [16–
18] as well as the derived affine scale-space representation theory
[19,20] have been a motivation to define scale and affine covariant
feature detectors under differential measures, such as the Differ-
ence of Gaussian (DoG) extractor [21] or the Harris–Laplace [22],
which is a scale (and rotation) covariant extractor that results from
the combination of the Harris–Stephens scheme [11] with a Gauss-
ian scale-space representation. Concisely, the method performs a
multi-scale Harris–Stephens keypoint extraction followed by an
automatic scale selection [23] defined by a normalized Laplacian
operator. The authors also propose the Hessian–Laplace extractor,
which is similar to the former, with the exception of using the
determinant of the Hessian matrix to extract keypoints at multiple
scales. The Harris–Affine scheme [24], an extension of the Harris–
Laplace, relies on the combination of the Harris–Stephens operator
with an affine shape adaptation stage. Similarly, the Hessian–
Affine algorithm [24] follows the affine shape adaptation; however,
the initial estimate is taken from the determinant of the Hessian
matrix. Another differential-based method is the Scale Invariant
Feature Operator (SFOP) [25], which was designed to respond to
corners, junctions, and circular features. The explicitly interpret-
able and complementary extraction results from a unified frame-
work that extends the gradient-based extraction previously
discussed in [26,27] to a scale-space representation.

The extraction of KAZE features [28] is a multiscale-based ap-
proach, which makes use of non-linear scale-spaces. The idea is
to make the inherent blurring of scale-space representations lo-
cally adaptive to reduce noise and preserve details. The scale-space
is built using Additive Operator Splitting techniques and variable
conductance diffusion.

The algorithms proposed by Gilles [29] and Kadir and Brady [9]
are two well-known methods relying on information theory. Gilles
defines keypoints as image locations at which the entropy of local
intensity values attains a maximum. Motivated by the work of
Gilles, Kadir and Brady introduced a scale covariant salient region
extractor. This scheme estimates the entropy of the intensity values
distribution inside a region over a certain range of scales. Salient re-
gions in the scale-space are taken from scales at which the entropy is
peaked. There is also an affine covariant version of this method [30].

Maximally Stable Extremal Regions (MSER) [2] are a type of af-
fine covariant features that correspond to connected components
defined under certain thresholds. These components are said to
be extremal because the pixels in the connected components have
either higher or lower values than the pixels on their outer bound-
aries. An extremal region is said to be maximally stable if the rel-
ative area change, as a result of modifying the threshold, is a local
minimum. The MSER algorithm has been extended to volumetric
[31] and color images [32] as well as been subject to efficiency
enhancements [33–35] and a multiresolution version [36].

3. Analysis and motivation

Local feature extractors tend to rely on strong assumptions on
the image content. For instance, Harris–Stephens and Laplacian-
based detectors assume, respectively, the presence of corners and
blobs. The MSER algorithm assumes the existence of image regions
characterized by stable isophotes with respect to intensity pertur-
bations. All of the above-mentioned structures are expected to be
related to semantically meaningful parts of an image, such as the
boundaries or the vertices of objects, or even the objects

themselves. However, we cannot ensure that the detection of a
particular feature will cover the most informative parts of the im-
age. Fig. 1 depicts two simple yet illustrative examples of how
standard methods such as the Shi–Tomasi algorithm [13] can fail
in the attempt of providing a robust image representation. In the
first example (Fig. 1(a)–(d)), the closed contour, which is a relevant
object within the image context, is neglected by the strictly local
extractor. On the other hand, the context-aware extraction re-
trieves a keypoint inside the closed contour as one of the most sali-
ent locations. The second example (Fig. 1(e) and (f))1 depicts the
‘‘Needle in a Haystack’’ image and the overlaid maps (in red) repre-
senting the Shi–Tomasi saliency measure and our context-aware sal-
iency measure. It is readily seen that our method provides a better
coverage of the most relevant object.

Context-aware features can show a high degree of complemen-
tarity among themselves. This is particularly noticeable in images
composed of different patterns and structures. The image in the
top row of Fig. 2 depicts our context-aware keypoint extraction
on a well-structured scene by retrieving the 100 most salient loca-
tions. This relatively small number of features is sufficient to pro-
vide a reasonable coverage of the image content, which includes
diverse structures. However, in the case of scenes characterized
by repetitive patterns, context-aware extractors will not provide
the desired coverage. Nevertheless, the extracted set of features
can be complemented with a counterpart that retrieves the repet-
itive elements in the image. The image in the bottom row of Fig. 2
depicts a combined feature extraction on a textured image in

Fig. 1. Context-aware keypoint extractions vs. strictly local keypoint extraction: 1.
Keypoints on a psychological pattern: (a) pattern (input image); (b) 60 most salient
Shi–Tomasi keypoints; (c) 5 most salient context-aware keypoints; (d) 60 most
salient context-aware keypoints. 2. Saliency measures as overlaid maps on the
‘‘Needle in a Haystack’’ image: (e) Shi–Tomasi; (f) Context-aware. Best viewed in
color. (For interpretation of the references to colour in this figure caption, the reader
is referred to the web version of this article.)

1 For interpretation of color in Figs. 1–3 and 5–8, the reader is referred to the web
version of this article.
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