
Computation of level lines of 4-/8-connectedness q

Yuqing Song
Tianjin University of Technology and Education, 1310 Dagu South Road, Hexi District, Tianjin 300222, China

a r t i c l e i n f o

Article history:
Received 16 September 2013
Accepted 3 December 2013
Available online 12 December 2013

Keywords:
Level line
Jordan boundary
Level set
Image representation
Level line tree
Square grid
Connectedness
Topdown algorithm

a b s t r a c t

We present a topdown algorithm to compute level line trees of 4-/8-connectedness. As a boundary of a
level set component, a level line of an image is a Jordan boundary of intensity value on instant interior
greater/less than on instant exterior. The interior of a Jordan boundary assumes 4-connectedness and
the exterior 8-connectedness, or the inverse. All level lines form a tree structure. The running time of
the algorithm is O(n + t), where n is the size of the input image and t is the total length of all level lines.
The efficiency of the algorithm is illustrated by experiments.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Image representation is of fundamental importance to many im-
age processing and computer vision applications. An image is gener-
ally represented in terms of properties of objects contained within
the image. Different representation techniques are developed for
different purposes, including Polar Harmonic Transforms [1], Non-
negative Matrix Factorization [2], Fourier Transforms [3], Wavelet
theory [4], Ridgelet Transforms [5], Scale-Space [6], and Level Set
Transforms [7]. As compared with other approaches, level set meth-
ods yield a complete, contrast invariant representation. In addition
level sets make a natural shape hierarchy and can handle cavities,
concavities, convolution, and splitting/merging.

Monasse and Guichard [8] argued that for human vision system
the boundaries of the level sets are perceptually more important
than the level sets themselves. Their algorithm, Fast Level Line
Transform (FLLT), computes a tree of level lines, where a shape is
a level set component with holes filled, and the boundary of a
shape is called a level line. FLLT takes a region growing approach
to build the trees of connected components of lower/upper level
sets. The two trees are then fused to build a level line tree. An im-
proved version, Fast Level Set Transform (FLST), can be found in [9].
FLST has two modules flst and flst_boundary to decompose an im-
age into a shape tree and to compute the shape boundaries, respec-
tively. Both FLLT and FLST require an average O(n log n) time for an

image of n points. Caselles et al. recently published an analysis of
the link between component tree and tree of shapes, and extended
FLLT for the general case of multidimensional images [7]. Level
lines offer a powerful framework for many image processing appli-
cations, including object disocclusion [10], image denoising [11],
and segmentation [12]. We refer to [13] for a detailed review of
level line tree and other related tree ordered structures in image
processing and computer graphics.

In discrete images we have two notions of connectedness on
square grid, 4- and 8-connectedness, according to the number of
neighbors of the pixels. It is common to use 4-connectedness for
upper level sets and 8-connectedness for lower level sets, or the in-
verse [8]. Another possibility to consider is a hexagonal lattice. Our
previous work [14] reported a topdown algorithm to compute 6-
connected level line trees on hexagonal grid. The algorithm begins
with image boundary, traversing its private region to find all its
child level lines. This process is repeated at each internal node to
find its children. The algorithm is optimal, using O(n + t) time,
where n is the image size and t is the total length of all level lines.

This paper extends the topdown level line computation algo-
rithm to square grid, and makes the following main contributions:

(1) When we migrate from hexagonal grid to square grid, the main
difficulty comes from the fact that the upper and lower level
sets use different connectedness. To deal with the asymmetry,
we define the instant interior/exterior of level lines based on the
connectedness used by the level sets, and develop new
mathematical techniques to analyze the properties of the
4-/8-connected level lines. These techniques can be applied
to other discrete image processing tasks as well.

1047-3203/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jvcir.2013.12.007

q This paper is partially supported by Natural Science Foundation of China under
contracts No. 61070112 and No. 61070116.

E-mail address: yqsong7@hotmail.com

J. Vis. Commun. Image R. 25 (2014) 435–444

Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier .com/ locate/ jvc i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvcir.2013.12.007&domain=pdf
http://dx.doi.org/10.1016/j.jvcir.2013.12.007
mailto:yqsong7@hotmail.com
http://dx.doi.org/10.1016/j.jvcir.2013.12.007
http://www.sciencedirect.com/science/journal/10473203
http://www.elsevier.com/locate/jvci

(2) The algorithm extension is not trivial. For example, a 6-con-
nected child level line is always adjacent to the private region
of its parent line (see Proposition 2 in [14]). But the example
in Fig. 1 tells a different story on square grid. In the example
the line F is isolated from the private region of its parent by its
siblings. On hexagonal grid, for a given parent line, the child
lines are discovered by searching the private region of the
parent; but on square grid, we need to keep track of the vis-
ited child lines and locate their adjacent siblings.

The rest of the paper is organized as follows. We prepare with
definitions and properties in Section 2, and present the algorithm
in Section 3. Section 4 is an experimental report. Section 5 con-
cludes. To ease reading, we defer the proofs of lemmas and propo-
sitions to the Annex.

2. Definitions and properties

In this paper we use 4-connectedness for upper level sets and
8-connectedness for lower level sets. The introduced algorithm
generates the level lines as the boundaries of the level sets of such
connectedness specification. By simply being applied to the
negative of the input image, the algorithm can also compute the
level lines as the boundaries of 8-connected upper level sets or
4-connected lower level sets.

Given an image f: X = {0,1, . . . ,w � 1} � {0,1, . . . ,h � 1} ?
{0,1, . . . ,d � 1}, we call upper level set Xk of value k and lower level
set Xl of value l the subsets of X:

vk ¼ fx 2 Xjf ðxÞ � kg;vl ¼ fx 2 Xjf ðxÞ � lg:

The connected components of the upper/lower level sets are nested
and can be represented into a tree structure, called the component
tree (see Fig. 2). Given a component in the tree, its border is a union
of Jordan curves, where one curve is outer boundary and the others
are inner boundaries representing the holes of the component.
Thanks to Jordan theorem ([15]), a closed Jordan curve divides the
plane into two connected components; the bounded one is the inte-
rior of the curve and the other one, not bounded, is the exterior.

Each boundary of a level set component is called a level line. A
level line l1 is called ‘‘included’’ by another level line l2 if the inte-
rior of l1 is included in the interior of l2. We retrieve the boundaries
(both outer boundaries and holes) of upper level set components
and organize them into an inclusion tree, called the positive level
line tree (Fig. 3(a)). The boundaries of the lower level set compo-
nents are represented by the negative level line tree (Fig. 3(b)).
The positive and negative trees of an image differ at level lines

meeting the image boundary; inside level lines appear the same
in both trees. For the example in Fig. 3, the level lines x and y meet
the image boundary; u and v are inside level lines which do not
meet the image boundary. The positive and negative trees share
the common level lines u and v, and differ at x and y. FLST [9] fuses
the two trees together such that each level line meeting the image
boundary has an area equal to or less than half the image. Our
strategy is to keep the bi-tree structure and let the ambiguity
solved by high level semantics [14].

In this paper we use 4-connectedness for upper level sets and
8-connectedness for lower level sets. With this connectedness
specification, the outer boundary of an upper level set component
is a 48-Jordan boundary1 of intensity value on instant interior greater
than on instant exterior, and an inner boundary of an upper level set
component is an 84-Jordan boundary of intensity value on instant
interior less than on instant exterior. See Fig. 4. Boundaries of the
two types are called positive and negative level lines, respectively.
Jordan boundary and related concepts are introduced in Section 2.1;
level lines and their properties are elaborated in Section 2.2.

2.1. Jordan boundary

In this paper we always let - ¼ 4 or 8, and - ¼ 12�-. In the
digital plane Z2, the complement of a pixel set A is denoted as Ac.
We use the following terms and notations in our discussion.

1. Regarding connectedness:
1.1 Two pixels (x1,y1) and (x2,y2) are called 4-adjacent or 4-

neighbors if |x1 � x2| + |y1 � y2| = 1. They are called 8-adja-
cent or 8-neighbors if |x1 � x2| + |y1 � y2| = 1 or 2, i.e., they
are 4-neighbors (|x1 � x2| + |y1 � y2| = 1) or diagonal neigh-
bors (|x1 � x2| + |y1 � y2| = 2).

1.2 An edgel is the common edge shared by two 4-adjacent
pixels. Each edgel is represented as (p,q), where p and q
are 4-neighbors and they are called the immediate interior
pixel (IIP) and the immediate exterior pixel (IEP), respec-
tively. Each pixel p has 4 edgels around it in a counter
clockwise order: (p,q0), (p,q1), (p,q2), (p,q3). See Fig. 5.
Edgels (p,q) and (q,p) are inverse to each other. Inverse
edgels have inverse directions. The inverse of an edgel
e = (p,q) is denoted as e�1, i.e., (p,q)�1 = (q,p).

1.3 A --path is a sequence of pixels hp1,p2, . . . ,pki in the plane
such that every two consecutive pixels, pi and pi+1 (for
0 < i < k), in the sequence are --adjacent.

1.4 A set of pixels is called --connected if for every two pixels
in the set, there is a --path in the set connecting them.

1.5 A --component of a pixel set is a --connected component
of the set.

2. Regarding regions:
2.1. A region is a finite and non-empty set of pixels in the plane.
2.2. A --region is a --connected region.
2.3. An s--region is a simply-connected --region, i.e., it is a --

region such that its complement is --connected.
2.4. A hole of a --region X is a bounded --component of Xc. The

set of holes is denoted as Ho-(X). See Fig. 6(a).
2.5. The surrounding set of a --region X, denoted as Su-(X), is

the unbounded --component of Xc. See Fig. 6(b).
2.6. The --extension of a --region X, denoted as Ex-(X), is the

extension of X by filling its holes, i.e., Ex-(X) is the union
of X and its holes. See Fig. 6(c). It is easy to verify
that Su-(X) = (Ex-(X))c and that for an s--region X,
Ex-(X) = X.

Fig. 1. An example of 4-/8-connected level lines. In the example the parent line A
has 5 child lines: B, C, D, E, and F, where the child line F is surrounded by its four
siblings.

1 As to be defined in Section 2.1, a ---Jordan boundary is a boundary where the
interior is --connected and the exterior is --connected.

436 Y. Song / J. Vis. Commun. Image R. 25 (2014) 435–444

Download English Version:

https://daneshyari.com/en/article/532472

Download Persian Version:

https://daneshyari.com/article/532472

Daneshyari.com

https://daneshyari.com/en/article/532472
https://daneshyari.com/article/532472
https://daneshyari.com

