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a b s t r a c t

For characterizing straight lines in defocused images, a rectilinear Gaussian model (RGM) is proposed.
Based on this model, a novel method for estimating the parameters of straight lines is presented. This
method, called gray-scale least square (GLS) method, directly deals with gray-scale image data without
requiring any preprocessing and hence no additional noise is introduced. Furthermore, the method is able
to simultaneously estimate four parameters of straight lines by performing the algorithm only once,
while two parameters can be typically estimated by traditional method. Besides this, all parameters
are given in closed-form solution. In order to illustrate the effectiveness of RGM and the GLS method,
the experiments are performed on a set of artificial images and natural images. The experimental results
show that the GLS method outperforms the traditional method from the point of view of sensitivity to
noise and accuracy of parameter estimation.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Lines in an image can be defined as global abstractions from lo-
cal intensity changes. They are highly distinguishable features in
images and convey the most relevant information of imaging con-
ditions. For this reason, lines have been widely employed in a large
variety of scientific fields and application fields. For example, they
serve as matching primitives in stereo matching [1,2], camera cal-
ibration [3] and object recognition [4,5]. They also tend to act as fo-
cus points in automatic focus [6]. Such lines are either straight or
curve, however, our discussion will be confined to straight lines,
and strictly speaking, to line segments. This is partly due to the fact
that line segments are more robust in providing greater positional
accuracy than curved lines, which is crucial especially for precision
measurement and high-accuracy positioning. At the same time,
curved lines can be approximated as aggregates of piecewise-linear
segments at a suitable scale [7–9].

Regardless of the task, if the straight-line parameters are effec-
tively estimated, a variety of other subsequent processing steps are
greatly facilitated. For this reason, many of methods have been
proposed to extract straight lines and estimate parameters. To
the best of our knowledge, almost all methods can estimate only
two parameters (i.e., orientation and distance). However, a line
segment should be considered not as a group of collinear pixels
in the image [10] but as a separate geometric structure that can

be fully defined by five parameters, which are: length, width, ori-
entation, distance, and maximum intensity on center. These
parameters play a key role in such tasks as image matching and
their relative importance varies between tasks. For instance, in ste-
reo matching and engineering drawings, length, width and maxi-
mum intensity are employed as more important factors among
these parameters [2,11]; width and maximum intensity play a
more important role in automatic focus[6], while orientation and
distance are more important parameters for the tasks of registra-
tion and rectification [12].

Generally, the estimation of straight-line parameters is com-
posed roughly of two basic steps: (1) detect edge points by edge
detectors such as the Canny algorithm [13]; (2) estimate the
parameters of straight lines by the Hough transform (HT) [14,15]
or least square (LS) [16]. The actual step taken depends on the spe-
cific algorithm. For example, the HT method in the second step acts
directly on the whole image without requiring partitioning, while
the LS method needs to determine the line-support region with a
metric such as proximity and similarity of orientation [7] before
parameter estimation. Unfortunately, in many cases, a single real
edge results in several strong edge responses at different (often
parallel) locations [8]. Moreover, edge detectors frequently mis-
place or entirely miss edges due to low signal-to-noise ratio or
low intensity contrast. At the same time, the information of inten-
sity in an input image, which is very important for parameter esti-
mation, is removed by edge detectors in the first step. The
problems in the discussion on edge operators pose difficulties for
parameter estimation with high accuracy. To resolve this dilemma,
some of the pioneering work in such areas was performed by Lo
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and Tsai [17]. The method to directly estimate straight-line param-
eters from gray-scale image data was designed, however, it is
inherently very expensive computationally due to 4D parameter
counting space. Alternatively, Zheng et al. [18] proposed a more
efficient method based on the Radon transform, whereas the six
parameters on which the resolution depends are required to be
specified artificially.

Furthermore, the performance of the approaches based on
either HT or LS is progressively degraded with an increase in the
amount of defocus in the imaging process. At the same time, the
depth of field is limited and hence the image captured by camera
is frequently blurred [19], especially for the cameras with shallow
focus [20]. In fact, precise focus is possible at only one distance,
that is, the image of a point in 3D space is sharp only when the
point intersects a particular hyperboloid [21,22], and the imaged
objects become increasingly blurred with increase of the distance
between the imaged point and the hyperboloid of exact focus. In
this sense, strictly speaking, defocus of a scene is inevitable, espe-
cially for microscopic imaging. It is worth noting that defocus car-
ries important information for parameter estimation [21,23].

Based on the aforementioned considerations, we developed an
approach to straight-line parameters estimation by exploiting
defocus information, but the approach proposed here is not limited
to defocused lines, which is proven by testing. Due to the fact that
in many cases, the canonical representation will be the starting
point for obtaining the optimal solution, a reasonable line model
is necessary to be designed exclusively for accurate parameter esti-
mation. For this purpose, we proposed RGM, by means of which a
desired method of estimation for straight-line parameters (i.e., the
GLS method) is presented.

The remainder of this paper is organized as follows. In Section 2,
we discuss related work. In Section 3, the details of RGM are de-
scribed. The GLS method, which is an application of RGM to
straight-line parameter estimation, is described in detail in Sec-
tion 4. Experimental results are given in Section 5. Some conclud-
ing remarks are given in Section 6.

2. Related work

In this section, we discuss the previous works related to straight
lines, mainly focusing on parameter estimation, which is one of the
basic tasks in a large variety of scientific fields [24–27]. A consider-
able number of approaches to straight-line parameter estimation
have been devised towards this end. These approaches fall into
two broad categories: One is the category based on HT or, more
generally, the Radon transform; the other is based on the LS meth-
od. The HT method exploits a ‘‘one to many’’ transform, in which
one edge point is transformed to many points in the parameter
space. As a result, inherent shortages in memory space and compu-
tational costs exclude such methods from many real world applica-
tions. For this reason, the HT method is not covered here and an
extensive review can be found in [14,27,28]. Instead, we will focus
on the LS method in the following section.

2.1. The LS method

The LS method is one of the widely used techniques and the ba-
sic method to fit lines to points in the plane [16], which was first
used by Gauss to calculate definitive orbits of solar system bodies
in 1795 [29]. For the purpose of discrimination, the method is
known as ordinary least squares (OLS), which can be represented
as follows:

Given an m � n real matrix A of rank k < min (m,n), and an
m-dimensional vector B, suppose the linear regression model is

B = Ab + e, the LS problem is how to find an n-dimensional vector
b so that the Euclidean length of Ab � B reaches minimum value.

In the OLS problem, there is an underlying assumption that all
the errors are confined to the observation vector B. Unfortunately
and frequently, both A and B are simultaneously noisy, therefore,
the assumption mentioned above is violated. This leads the solu-
tion bLS to suffer from great bias and covariance. To overcome this
problem, Pearson [30] proposed the total least squares (TLS) meth-
od, which is considered as a natural generalization of the LS meth-
od. The TLS method defines the residue as the normal (or shortest)
distance of the point to the line instead of the difference of the y
coordinates [16]. However, the vector b will be a strongly consis-
tent estimate only if the measurement errors for each observation
are independently and identically distributed with zero mean.
When this condition is also violated, parameter estimation must
employ the structured total least squares (STLS) algorithm
[31,32] or the constrained total least squares (CTLS) approach
[33]. In fact, the STLS approach is equal to the CTLS approach,
which is proven by Lemmerling et al. [34].

In spite of its mathematical beauty and computational simplic-
ity, one single outlier (points that are far from the line [35]) gener-
ated by random noise can have an arbitrarily large effect on the LS
estimators, no matter how big the sample size is [36]. This lack of
stability of the LS method is a serious problem in applications [37].
Hence, robust alternatives to the method of least squares are sorely
needed. To alleviate the problem, Huber [38] introduced an M esti-
mator based on a maximum likelihood estimate. However, the
breakdown point (the maximum fraction of outliers which a given
sample may contain without spoiling the estimate completely
[36,39]) of the M estimator is zero because of the possibility of
leverage points. To remedy this situation, generalized M estimators
[40,41] were introduced. Unfortunately, they have a breakdown
point tending to 0 when the dimension of data matrix A increases
[39]. The S-estimator [42] is the first estimator that attained the
maximum breakdown point. However, it cannot simultaneously
achieve a high breakdown point and high efficiency [37,43]. The
MM-estimator [39] and s-estimator [44] obtain robust and
efficient estimations. Unfortunately, this comes at the cost of an
increase in bias [37].

Many researchers have drawn on robust and efficient estima-
tions another way. Agostinelli and Markatou [45] presented the
weighted least squares (WLS) estimator, but their weighting
scheme is complicated. Gervini and Yohai [37] proposed the robust
and efficient weighted least squares (REWLS) estimator based on
the WLS estimator, which is asymptotically efficient if errors are
normally distributed. However, the asymptotic distribution of
REWLS typically depends upon the initial estimator. To address
this issue, Čížek [46] proposed the two-step least weighted squares
(2S-LWS) estimator, which has an asymptotic distribution inde-
pendent of the initial estimate and preserves its robust properties.

The least median of squares (LMS) estimator, which was first
proposed by Hampel [47], replaces the sum in the OLS estimator
by a median to attain maximum breakdown point. Contrary to
OLS, LMS has no closed-form solution, and therefore it must be
solved by iterative algorithms. Furthermore, its objective function
requires sorting of the squared residuals. For this reason, the initial
LMS estimator has a very low efficiency. To improve the efficiency
of the LMS estimator, Rousseeuw [36] suggested using a high
breakdown-point estimate followed by a one-step M-estimate or
a one-step re-weighted least squares. However, its exact break-
down point is not known and therefore it is not clear whether
the breakdown-point of the initial estimate is changed [39]. In fact,
the LMS estimate is equivalent to finding the strip defined by two
parallel lines of minimum vertical separation that encloses at least
half of the points. The best algorithm for finding the LMS strip is
the topological plane-sweep algorithm due to Edelsbrunner and
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