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a b s t r a c t

Recently, mutual interdependence analysis (MIA) has been successfully used to extract representations,

or ‘‘mutual features’’, accounting for samples in the class. For example, a mutual feature is a face

signature under varying illumination conditions or a speaker signature under varying channel

conditions. A mutual feature is a linear regression that is equally correlated with all samples of the

input class. Previous work discussed two equivalent definitions of this problem and a generalization of

its solution called generalized MIA (GMIA). Moreover, it showed how mutual features can be computed

and employed. This paper uses a parametrized version GMIAðl) to pursue a deeper understanding of

what GMIA features really represent. It defines a generative signal model that is used to interpret

GMIAðl) and visualize its difference to MIA, principal and independent component analysis. Finally,

we analyze the effect of l on the feature extraction performance of GMIAðl) in two standard

pattern recognition problems: illumination-independent face recognition and text-independent

speaker verification.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical pattern recognition methods such as Fisher’s linear
discriminant analysis (FLDA) [9], canonical correlation analysis
(CCA) [16] or ridge regression [25] aim to model or extract the
essence of a dataset. The goal is to find a simplified data
representation that retains the information that is necessary for
subsequent tasks such as classification or prediction. Each method
uses a different viewpoint and criteria to find this ‘‘optimal’’
representation. Furthermore, pattern recognition problems impli-
citly assume that the number of observations is usually much
higher than the dimensionality of each observation. This allows
one to study characteristics of the distributional observations and
design proper discriminant functions for classification. For
instance, FLDA is used to reduce the dimensionality of a dataset
by projecting data points on a space that maximizes the ratio of
the between- and within-class scatter of the training data. In this
way, FLDA aims to find a simplified data representation that
retains the discriminant characteristics for classification. On the
other hand, CCA assumes one common source in two datasets.
The dimensionality of the data is reduced by retaining the space
that is spanned by pairs of projecting directions in which the
datasets are maximally correlated. In contrast, ridge regression

finds a linear combination of the inputs that best fits a desired
response.

In this paper, we present alternative criteria to find an
‘‘optimal’’ dataset representation. We aim to extract an invariant
representation of high-dimensional instances of a single class,
where the number of input instances N is smaller than their
dimensionality D. An invariant is a property or feature of the input
data that does not change within its class. Approaches that have
been designed for this purpose are mutual interdependence
analysis (MIA) and generalized MIA (GMIA) [4–6]. We revisit
both methods in Sections 2 and 3, respectively, and parametrize
GMIA with l, which subsumes MIA for l¼ 0. In Section 4, we
introduce a generative model for GMIAðl). On synthetic data, we
demonstrate that GMIAðl) extracts features unlike approaches
such as PCA and ICA. Also we show how these features differ from
the sample mean. Section 5 evaluates the discriminative quality of
GMIAðl) features for illumination-invariant face recognition on
synthetic data. Section 6 analyses the effect of l on real data for
illumination-invariant face recognition and text-independent
speaker verification. The document concludes with a summary
and directions for future work.

2. Mutual interdependence analysis (MIA)

MIA was first introduced by the authors in Claussen et al. [4] to
uniquely represent high-dimensional samples of a single class.
The understanding of how this problem can be succinctly and

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

0031-3203/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.patcog.2010.09.012

� Corresponding author at: Siemens Corporation, Corporate Research,

755 College Road East, Princeton, NJ 08540, USA.

E-mail addresses: Heiko.claussen@siemens.com (H. Claussen),

Justinian.rosca@siemens.com (J. Rosca), rid@ecs.soton.ac.uk (R. Damper).

Pattern Recognition 44 (2011) 650–661

www.elsevier.com/pr
dx.doi.org/10.1016/j.patcog.2010.09.012
mailto:Heiko.claussen@siemens.com
mailto:Justinian.rosca@siemens.com
mailto:rid@ecs.soton.ac.uk
dx.doi.org/10.1016/j.patcog.2010.09.012


elegantly stated has been evolved and generalized [6]. In this
section we present an up to date statement of MIA.

2.1. Scatter-based definition of MIA

Throughout this paper, xðpÞi ARD denotes the ith input vector,
i¼1yN(p) in class p. Furthermore, we use XðpÞDX to represent a
matrix with columns xi

(p) and X to denote the matrix with
columns xi of all K classes. Moreover, l¼ ð1=NÞ

PN
i ¼ 1 xi, 1 is a

vector of ones and I represents the identity matrix.
Assume that we wish to find a class representation w(p) of

high-dimensional data vectors xi
(p)
ðDZNðpÞÞ. A common first

step is to select features so as to reduce the dimensionality of the
data. However, because of possible loss of information, this
preprocessing is not always desirable. Therefore, we aim to find
a class representation of similar or same dimensionality as
the inputs.

The quality of such a representation can be evaluated by its
correlation with the class instances. Our intuition is that
a superior class representation is highly correlated and also has
a small variance of the correlations over all instances in the class.
The former condition ensures that most of the signal energy in the
samples is captured. The latter condition is indicative of member-
ship in a single class. Note that only vectors in the span of the
class instances contribute to the cross-correlation value. There-
fore, in the absence of prior knowledge, it is reasonable to
constrain the search for a class representation w to the span of
the training vectors w¼XðpÞ � c, where cARNðpÞ . This problem
definition is the motivation for the MIA criterion proposed in
Claussen et al. [4].

The MIA representation for class p is defined as a direction
wðpÞMIAARD that minimizes the projection scatter of the class p

inputs, under the linearity constraint to be in the span of X(p):

wðpÞMIA ¼ argmin
w,w ¼ XðpÞ �c

ðwT � ðXðpÞ�lðpÞ � 1T
Þ � ðXðpÞ�lðpÞ � 1T

Þ
T
�wÞ ð1Þ

Note that the original space of the inputs spans the space of the
mean subtracted inputs plus possibly one additional dimension.
Indeed, the mean subtracted inputs, which are linear combina-
tions of the original inputs, sum to zero. Mean subtraction cancels
linear independence resulting in a 1D span reduction. The
following two theorems describe the MIA solution.

Theorem 2.1. The minimum of the criterion in Eq. (1) is zero if the

inputs xi are linearly independent.

If inputs are linearly independent and span a space of
dimensionality NrD, then the subspace of the mean subtracted
inputs in Eq. (1) has dimensionality N�1. There exists an
additional dimension in RN , orthogonal to this subspace. Thus,
the scatter of the mean subtracted inputs can be made zero. The
existence of a solution where the criterion in Eq. (1) becomes zero
is indicative of an invariance property of the data.

Theorem 2.2. The solution of Eq. (1) is unique (up to scaling) if the

inputs xi are linearly independent.

By solving in the span of the original rather than mean subtracted
inputs, a closed form solution of Eq. (1) can be found [4]:

wðpÞMIA ¼ zXðpÞ � ðXðpÞ
T
� XðpÞÞ�1

� 1 where z is a constant ð2Þ

Consider that ðXðpÞ
T
� XðpÞÞ�1

� 1 is a column vector. The structure of
the solution shows that w is a data-dependent transformation
representing a linear combination of the input observations.

The mathematical structure of this MIA solution has a striking
similarity with linear regression. Indeed this result can be
obtained as follows. Let us assume the regression problem

y¼X � b. We are looking for b such that the unknown regression
y is equally correlated with all inputs XT

� y¼ 1. It can be shown
that the solution to this problem is given by Eq. (2) with z¼ 1 and
y¼w. In Section 3, we return to the discussion of similarities
between the two problems. Eq. (2) computes a unique represen-
tation we call MIA with the property of invariant correlation with
all samples in the input. This uniqueness indicates that MIA
captures an inherent property of the input data.

2.2. CCA-based definition of MIA

The minimum variance criterion is also used in other data analysis
approaches such as FLDA. However, this theory does not apply when
analyzing data from one class. This motivated the comparison with
CCA as a generalization of FLDA, and the discovery of an equivalent,
CCA-based formulation of the MIA problem. We revisit this new
definition following and extending Claussen et al. [6]. First, we review
CCA and its FLDA equivalent formulation. Thereafter, we extend this
formulation to address the MIA problem.

If a common source sARN influences two datasets XARD�N

and ZARK�N , of possibly different dimensionality, CCA is used to
extract this inherent similarity. The goal of CCA is to find two
vectors to project the datasets such that their projection lengths
are maximally correlated. Let CXZ denote the cross covariance
matrix between the datasets X and Z. Then the CCA problem is
given by maximization of the objective function

Jða,bÞ ¼
aT � CXZ � bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aT � CXX � a
p

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bT
� CZZ � b

q ð3Þ

over the vectors a and b. The CCA problem can be solved by a
singular value decomposition (SVD) of C�1=2

XX � CXZ � C
�1=2
ZZ [19]. The

solution is obtained by solving the two eigenvector problems:

C�1=2
XX � CXZ � C

�1
ZZ � CZX � C

�1=2
XX

� �
� a¼ la ð4Þ

and

C�1=2
ZZ � CZX � C

�1
XX � CXZ � C

�1=2
ZZ

� �
� b¼ lb ð5Þ

We hypothesize that the maximally correlated projections XT
� a

and ZT
� b represent an estimate of the common source.

Canonical correlation analysis can be used to extract classifica-
tion relevant information from a set of inputs. Indeed, let X be the
union of all data points and Z the table of corresponding class
memberships, k¼1,y,K and i¼1,y,N:

Zki ¼
1 if xiAXðkÞ

0 otherwise

(

All classification relevant information is represented by this
classification table. Therefore, this information is retained in those
input components of X that originate from a common virtual
source with the classification table. It has been shown [2,19,14,1]
that this special CCA approach is equivalent to FLDA.

CCA with Z given by the class membership can be modified to
extract a representation of inputs from a single class, similar to
MIA. One possible interpretation of CCA is from the point of view
of the cosine angle between the (non-mean-subtracted) vectors
aT � X and ZT

� b. The aim is to find a vector pair that results in a
minimum angle. We will use a modified CCA criterion (MCCA) as
follows. First, consider the original inputs rather than the mean
subtracted covariance matrices; second, the class membership
table for data from a single class collapses to a vector and b to a
scalar, therefore ZT

� b¼ 1 � b. Thus, criterion Eq. (3) becomes
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