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ABSTRACT

Graph-based methods for linear dimensionality reduction have recently attracted much attention and
research efforts. The main goal of these methods is to preserve the properties of a graph representing the
affinity between data points in local neighborhoods of the high-dimensional space. It has been observed
that, in general, supervised graph-methods outperform their unsupervised peers in various classification
tasks. Supervised graphs are typically constructed by allowing two nodes to be adjacent only if they are
of the same class. However, such graphs are oblivious to the proximity of data from different classes. In
this paper, we propose a novel methodology which builds on ‘repulsion graphs’, i.e., graphs that model
undesirable proximity between points. The main idea is to repel points from different classes that are
close by in the input high-dimensional space. The proposed methodology is generic and can be applied to
any graph-based method for linear dimensionality reduction. We provide ample experimental evidence
in the context of face recognition, which shows that the proposed methodology (i) offers significant per-
formance improvement to various graph-based methods and (ii) outperforms existing solutions relying

on repulsion forces.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The goal of dimensionality reduction [3] is to map high-
dimensional data samples to a lower dimensional space such
that certain properties are preserved. Graph-based methods (e.g.,
[5,10,18,14]) have attracted much research interest over the past
few years. These methods typically rely on some graph to capture
the salient geometric relations of the data in the high-dimensional
space. This graph is usually called an affinity graph [14], since its
edge set conveys some information about the proximity of the data
in the input space. Once the affinity graph has been constructed,
these methods derive the low-dimensional samples by imposing
that certain graph properties be preserved in the reduced space.
This typically results in an optimization problem, whose solution
provides the reduced data, or a mechanism to project data from the
original space to low-dimensional space.

In general, it has been observed that supervised graph-based
methods outperform significantly their unsupervised peers in
various recognition tasks. It is common practice to construct a
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supervised graph by only setting adjacent the nodes from the same
class (see, e.g., [14]). The intuition is that during projection, when the
data locality (or local geometry) is preserved, points from the same
class will be mapped to points that are close by. This, however, has
one particular weakness; namely that points from different classes
but nearby in some other measure (e.g., Euclidean distance) may be
projected to points that are close-by in the low-dimensional space.
This may lead to potential misclassification.

To remedy this weakness, we propose a methodology based on
repulsion graphs. A repulsion graph is a graph whose edge set cap-
tures pairs of points that belong to different classes, but are close by
in the input space. Maximizing the pairwise distances between these
points will tend to repel these points from one another when they
are projected. The proposed framework based on repulsion graphs is
generic and can be applied to any graph-based method to improve
its classification performance. The idea of repulsion forces, or nega-
tive energies, has been previously used in another context in graph-
drawing techniques [15,17] and in dimensionality reduction under
different formulations (see, e.g., [24,25]). The latter approaches use
the k-NN graph to define attraction and repulsion forces. However,
they both fail to exploit the full supervision information as the at-
traction forces are only defined among nearest neighbors.

In contrast, our methodology applies attraction forces to all points
of the same class, in addition to using repulsion forces, and this in
turn brings significant discriminant information. We provide exper-
imental evidence which shows that (i) including repulsion forces in
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various graph-based methods can significantly boost their perfor-
mance and (ii) the proposed framework outperforms other com-
peting solutions based on related repulsion ideas. In short, the
contribution of our paper is twofold: (i) we introduce a new
methodology for defining attraction and repulsion forces and (ii) we
provide a theoretical analysis of the spectral properties of the re-
sulting repulsion matrix as well as a physical interpretation of the
repulsion forces.

The rest of the paper is organized as follows. First, in Section 2 we
establish the concept of affinity graphs that capture the data proxim-
ity and then we discuss in Section 3 how these graphs are typically
employed in different graph-based dimensionality reduction meth-
ods. Then, in Section 4 we introduce the proposed methodology on
repulsion graphs. Next, in Section 5.1 we analyze the spectral prop-
erties of the involved matrix and in Section 5.2 we provide a physi-
cal interpretation of the repulsion forces in our framework. Finally,
Section 6 presents our experimental results.

2. Affinity graphs and their properties

Assume a set of high-dimensional data samples
X=[X],X2,...,Xn]€Rmxn. (])

Due to the high dimension, it is common practice to use graphs in
order to model the geometry of the data and also to cope with the
curse of dimensionality. Thus, we often define a graph

G=(v,8) (2)

whose nodes ¥~ correspond to the data samples and the edge set
& models the relations between them. When we build the graph,
depending on whether we use the class labels or not, we distinguish
between two different cases: supervised and unsupervised.

Supervised case: the class graph. Assume that we have c classes
and that the data are given as in (1) along with their class labels
£:[1,...,n] = [1,...,c]. Here {(i) = j means that the ith data sample
belongs to the jth class. For the supervised case the class labels are
used to build the graph. It has been observed in general that super-
vised methods perform better in many classification tasks relative
to the unsupervised ones. The motivation here is to build the graph
in a discriminant way in order to reflect the categorization of the
data into different classes. One simple approach is to build the data
graph in (2) such that an edge e;; = (x;, ;) exists if and only if x; and
x; belong to the same class. In other words, we make adjacent those
nodes that belong to the same class.

Consider now the structure of the induced adjacency matrix A.
Let n; be the number of samples which belong to the ith class. Ob-
serve that the data graph G consists of ¢ cliques, since the adjacency
relationship between two nodes reflects their class relationship. This
implies that with an appropriate reordering of the columns and rows,
the adjacency matrix A will have a block diagonal form, where the
size of the ith block is equal to the size n; of the ith class. Hence, A
will be of the following form:

A= diag(A1,A2, ...,Ac).

In the above, the block A; corresponds to the ith class.

The unsupervised case: neighborhood graphs. In the unsupervised
case the class labels are not used and we typically define the edge
set & in (2) in a way that captures the proximity of the data in the
input high-dimensional space. The k-NN graph is one very popular
example that belongs to this category. In the k-NN graph two nodes
x; and x; are made adjacent only if x; is among the k nearest neighbors
of x; or vice versa. Another typical example is the e-graph. In this
case, a node x; is made adjacent to all nodes x;, j#i that are within
distance ¢ from it.

2.1. Graph weights

Edge weights are assigned in order to determine how each sample
is influenced by its neighbors. This amounts to defining a weight
matrix W € R™" whose sparsity pattern is inherited by the adjacency
matrix A. A few popular choices of weights are reviewed below.

Binary weights. The weight matrix W is simply set equal to the
adjacency matrix A.

Gaussian weights. The weight matrix W is defined as follows:

We e NI/t if A0,
L 0 otherwise.

These weights are also known as heat kernel weights. Note the pres-
ence of the parameter ¢.

Reconstruction weights. These weights were first introduced in
[18,20]. The weight matrix in this case is built by computing optimal
coefficients which relate a given point to its nearest neighbors in
some locally optimal way. Each data sample along with its k nearest
neighbors are assumed to (approximately) lie on a locally linear man-
ifold. Hence, each data sample x; is (approximately) reconstructed by
a linear combination of its k nearest neighbors. The reconstruction
errors are measured by minimizing the objective function

2

W)=y (3)

i

Xj — Z WUX]
i 2

The weights w;; represent the linear coefficient for reconstructing
the sample x; from its neighbors {x;}. For a fixed i, the weights w;; are
nonzero only when i and j are neighbors, and their sum is constrained
to be equal to one. There is a simple closed-form expression for the
weights. For details see [18,20].

2.2. Graph Laplaceans

Graph Laplaceans provide one of the most common and useful
tools for dimensionality reduction, see, e.g. [5,10,14,13,18]. Let .A"(k)
denote the adjacency list of a vertex x;. Then, a graph Laplacean is a
matrix L € R™", which has the following property:

<0 forje (i), j#i,
Ljy = -y Ly ifi=j.
k#i

For instance, observe that when W is a weight matrix, and if D is a
diagonal matrix with Dj;=};Wj;, then L=D—W, is a graph Laplacean.
The fundamental property of graph Laplaceans is that for any vector
x of n scalars x;, i=1,...,n, we have: x"Lx = %ZUW,HX,' - xj\z. This
relation can be generalized to arrays with n column-vectors y; € 2™
as follows:

.1 n
TeVY T = 5 3 Wyl - w13, )
ij=1

where Y € 2™ " (see [14,13]). Finally, note that graph Laplaceans
have been used extensively for clustering, see, e.g., [21], and for the
closely related problem of graph partitioning [1]. The paper [23]
gives a good overview of graph Laplaceans and their properties.

3. Graph-based dimensionality reduction: overview

Given a data set X as in (1), the goal of dimensionality reduction
is to produce a set Y which is an accurate representation of X, but
whose dimension d is much less than the original dimension m. This
can be achieved in different ways by selecting the type of producing
the reduced dimension data Y as well as the desirable properties
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