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Biclustering is an important method in DNA microarray analysis which can be applied when only a
subset of genes is co-expressed in a subset of conditions. Unlike standard clustering analyses, biclustering
methodology can perform simultaneous classification on two dimensions of genes and conditions in a
microarray data matrix. However, the performance of biclustering algorithms is affected by the inherent
noise in data, types of biclusters and computational complexity. In this paper, we present a geometric
biclustering method based on the Hough transform and the relaxation labeling technique. Unlike many
existing biclustering algorithms, we first consider the biclustering patterns through geometric interpre-
tation. Such a perspective makes it possible to unify the formulation of different types of biclusters as
hyperplanes in spatial space and facilitates the use of a generic plane finding algorithm for bicluster
detection. In our algorithm, the Hough transform is employed for hyperplane detection in sub-spaces
to reduce the computational complexity. Then sub-biclusters are combined into larger ones under the
probabilistic relaxation labeling framework. Our simulation studies demonstrate the robustness of the
algorithm against noise and outliers. In addition, our method is able to extract biologically meaningful
biclusters from real microarray gene expression data.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Microarray technology is a high-throughput and parallel platform
that can provide expression profiling of thousands of genes under
different biological conditions, thereby enabling rapid and quanti-
tative analysis of gene expression patterns on a global scale [1,2].
Microarray data can be represented as a matrix. In this paper, we
assume that each row of the data matrix corresponds to a gene and
each column an experimental condition. In practical applications,
the roles of rows and columns may be exchanged and data analysis
algorithms need to be changed correspondingly. Each entry in the
matrix records the expression level of a gene as a real number, which
is usually derived by taking the logarithm of the relative abundance
of the mRNA of a gene in a specific condition. By analyzing the ma-
trix, we can learn more about the cellular operation in organisms.
However, this analysis is complex due to the large number of genes
to be considered, the limited number of conditions, and noise in the
data [3,4].
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Clustering is widely used in microarray data analysis. While tra-
ditional clustering methods, such as the hierarchical and k-means
clustering algorithms, are useful in investigating the underlying
patterns of gene expression datasets [5–8], they have several lim-
itations. First, most clustering methods only measure the global
similarity between expression profiles. Second, all genes and condi-
tions have to be assigned to clusters. In these methods, it is assumed
that related genes in a cluster behave similarly across all measured
conditions. However, an interesting cellular process for most cases
may be involved in a subset of genes co-expressed only under a
subset of conditions. Discovering such local expression patterns
may be the key to uncovering many genetic pathways that are not
apparent otherwise. Therefore, it is highly desirable to move be-
yond the clustering paradigm, and to develop approaches capable
of discovering local patterns in microarray data [4,9–12].

Inspired by Hartigan's so called “direct clustering” [12], bicluster-
ing was first introduced to gene expression analysis by Cheng and
Church [9]. In general, biclustering refers to the simultaneous clus-
tering on the row and column dimensions of the data matrix [4]. A
biclustering scheme that produces gene and condition clusters si-
multaneously can model the situation in which related genes are
considered to be co-regulated under certain conditions, but to be-
have almost independently under other conditions. Furthermore, a
biclustering model can avoid those irrelevant genes that are not ac-
tive in any experimental conditions under consideration.
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The research literature on biclustering has been booming in re-
cent years. Existing biclusteringmethods include Cheng and Church's
(CC) algorithm [9,13], sequential evolutionary biclustering (SEBI)
[14,15], flexible overlapped biclustering algorithm (FLOC) [16], gene
shaving [17], order-preserving sub-matrix (OPSM) [18], spectral bi-
clustering [19], coupled two-way clustering (CTWC) [20], statistical-
algorithmic method for bicluster analysis algorithm (SAMBA) [21],
iterative signature algorithm (ISA) [22,23], xMotif [24], and the fast
divide-and-conquer algorithm (Bimax) [25]. Comprehensive surveys
of biclustering algorithms can be found in Refs. [4,11]. A systematic
comparison of some biclustering methods is made in [25].

In general, existing algorithms perform biclustering by adding or
deleting rows and/or columns in the data matrix in optimal ways
such that a merit function is improved by the action. A different
viewpoint of biclustering can be formulated in terms of the spa-
tial geometric distribution of points in data space. The biclustering
problem is tackled as the identification and division of coherent sub-
matrices of data matrices into geometric structures (lines or planes)
in a multidimensional data space [26]. Such perspective makes it
possible to unify the formulations of different types of biclusters and
extract them using an algorithm for detecting geometric patterns,
such as lines and planes.

Recently, pattern recognition based methods have been de-
veloped for data biclustering [26–29]. In these algorithms, the
well-known Hough transform (HT) is employed to detect geometric
patterns. However, the direct HT-based biclustering algorithm be-
comes ineffective in terms of both computing time and storage
space. To overcome the difficulties, sub-dimension based method
has been introduced in the biclustering algorithm. The strategy re-
duces the computational complexity considerably. For example, the
geometrical biclustering algorithm (GBC) only performs the HT in
2D column-pair spaces [28].

After obtaining sub-biclusters in sub-dimensional spaces, we
need to merge small sub-biclusters into larger ones. In the GBC,
the combination criterion of common genes and conditions can
be too strict to form meaningful biclusters of larger sizes. In fact,
we find in our studies that the number of genes in the identified
biclusters is often small and the outcome is sensitive to the noise.
Furthermore, the geometric properties of biclusters are ignored in
the combination steps.

To overcome the shortcomings of the GBC, we propose an im-
proved biclustering algorithm within the framework of probabilistic
relaxation labeling. Relaxation labeling processes are widely used in
many different domains including image processing, pattern recog-
nition, and article intelligence [30,31]. They are iterative procedures
that aim to reduce the ambiguity and noise effect to select the best
labels for all objects. In the biclustering process of microarray data,
many sub-biclusters (sub-matrices) are first detected using the HT.
In the next step, the problem is how to merge the small-sized sub-
biclusters into larger ones. One of the contributions of our work here
is that we have mapped the procedure of merging sub-biclusters
into a relaxation framework that can deal with noise and outliers
effectively. In the merging step of the proposed algorithm, we con-
sider the expression values in a microarray data matrix as objects
and label them based on the distance of points to the detected hy-
perplanes. According to this criterion, outliers or noisy points with
large distances to their corresponding hyperplanes are deleted and
the points are close to the hyperplanes are merged into larger sub-
biclusters. Thus, consistent and large-sized biclusters can be discov-
ered in this procedure. The details of the criterion are described in
Section 4.

The paper is organized as follows. In Section 2, we show that
different types of biclusters can be mapped to geometric patterns
in the data space. The following two sections present a brief intro-
duction to the HT and the relaxation labeling scheme used in our
algorithm. In Section 5, we describe the proposed relaxation-based

geometrical biclustering (RGBC) algorithm in details. In Section 6, the
characteristics of the algorithm are studied using simulated and real
microarray data. Discussions and conclusions are given in Section 7.

2. Geometric models of biclusters

In this section, we demonstrate the relations between biclusters
and their corresponding hyperplanes from a geometric perspective
and we discuss their properties in the complete and sub-dimensional
data spaces.

We will work on a gene expression matrix DN×M with N genes
and M experimental conditions. As an example, we demonstrate one
matrix in Fig. 1(a) where different intensity values are represented
with different gray levels. Traditional clustering methods attempt
to group objects (genes or conditions) into different categories to
uncover any hidden local patterns embedded in thematrix. However,
if we try to cluster DN×M using all measurements, we would not
uncover any useful patterns although they actually exist in DN×M .
By relaxing the constraint that related objects must behave similarly
across all measurements, such patterns can be uncovered readily as
demonstrated in Fig. 1(b), where the rows and columns of DN×M are
appropriately permuted in order to show the specific local pattern
clearly.

Biclustering performs clustering in the gene and condition di-
mensions simultaneously. A bicluster is regarded as a subset of genes
that exhibit similar biological functions under a subset of experi-
ment conditions [4]. Denoting the row and column indices of DN×M
as G = {g1, . . . ,gN} and C = {c1, . . . , cM}, we have D= (G,C) ∈ �N×M . We
define sB = (X,Y) as a sub-matrix of D, where X = {N1, . . . , Nx} ⊆ G and
Y = {M1, . . . , My} ⊆ C. The sub-matrix sB is called a sub-bicluster if it
contains a coherent pattern defined below. A maximal sub-bicluster
is called a bicluster if and only if no sB′ exists such that sB ⊂ sB′

(that is X ⊂ X′ or Y ⊂ Y′) [29]. Five types of biclusters are reviewed
by Madeira and Oliveira [4], representing five coherent patterns in
the two dimensional data space, including constant, constant rows,
constant columns, additive and multiplicative ones, corresponding
to different biological phenomena [4].

Various biclustering algorithms are proposed to identify particu-
lar types of biclusters. Most of these algorithms employ data mining
techniques to search for the best possible sub-matrices. The general
strategy in all these algorithms can be described as permuting rows
and/or columns of the data matrix such that an appropriate merit
function is improved by the action. Obviously, the form of the merit
function depends on the types of bicluster patterns to be uncovered.

In contrast to the existing permutation-based approach, a novel
geometric perspective for the biclustering problem is proposed in
[26]. In this new viewpoint, sub-matrices become points in the high
dimensional data space. Instead of searching for coherent pattern B
in D by permutation, the biclustering problem is transformed to the
detection of geometric structures formed by spatial arrangement of
these data points. This perspective provides a unified formulation for
extracting different types of biclusters simultaneously. Furthermore,
the geometric view makes it possible to perform biclustering using
generic line or plane finding algorithms.

For example, the condition set Y in B = (X, Y) spans a ‖Y‖-
dimensional space, and the expression of every gene in X corre-
sponds to a point in the space. In such data space, five types of
biclusters, including constant, constant rows, constant columns,
additive and multiplicative ones [4], can be uniquely mapped to
five linear structures, such as points, lines or planes. In general, the
five types of biclusters can be expressed using the linear equation∑

iaixi=0. For example, a multiplicative bicluster can be represented
as xi = aijxj. This means that the expression level of a gene involved
under one condition is always proportional to the expression level
of the gene under another condition. In Fig. 1(c), an example of
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