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In this work, neural network-based models involved in hyperspectral image spectra separation are con-
sidered. Focus is on how to select the most highly informative samples for effectively training the neural
architecture. This issue is addressed here by several new algorithms for intelligent selection of training
samples: (1) a border-training algorithm (BTA) which selects training samples located in the vicinity of the
hyperplanes that can optimally separate the classes; (2) a mixed-signature algorithm (MSA) which selects
the most spectrally mixed pixels in the hyperspectral data as training samples; and (3) a morphological-
erosion algorithm (MEA) which incorporates spatial information (via mathematical morphology concepts)
to select spectrally mixed training samples located in spatially homogeneous regions. These algorithms,
along with other standard techniques based on orthogonal projections and a simple Maximin-distance
algorithm, are used to train a multi-layer perceptron (MLP), selected in this work as a representative
neural architecture for spectral mixture analysis. Experimental results are provided using both a database
of nonlinear mixed spectra with absolute ground truth and a set of real hyperspectral images, collected at
different altitudes by the digital airborne imaging spectrometer (DAIS 7915) and reflective optics system
imaging spectrometer (ROSIS) operating simultaneously at multiple spatial resolutions.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Imaging spectroscopy (i.e., hyperspectral imaging) is a remote
sensing technique capable of identifying materials and objects in the
air, land and water on the basis of the unique reflectance patterns
that result from the interaction of solar energy with the molecular
structure of the material [1]. Advances in sensor technology have led
to the development of hyperspectral instruments [2] capable of col-
lecting tens or even hundreds of images, corresponding to different
wavelength channels, for the same area on the surface of the Earth.
As a result, each pixel (vector) in a hyperspectral image has an asso-
ciated spectral signature or “fingerprint” that uniquely characterizes
the underlying objects, as shown by Fig. 1.

The wealth of spectral information provided by hyperspectral
sensors has opened ground-breaking perspectives in many applica-
tions with high computational requirements [3–5], including envi-
ronmental modeling and assessment, target detection for military
and defense/security deployment, urban planning and management
studies, risk/hazard prevention and response including wild-land fire
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tracking, biological threat detection, monitoring of oil spills.
However, the design of processing algorithms for hyperspectral
data introduces additional challenges. In particular, conventional
supervised classification techniques for hyperspectral imagery were
originally developed under the assumption that the classes to be
separated are discrete and mutually exclusive, i.e., it is assumed that
each pixel vector is “pure” and belongs to a single spectral class. Of-
ten, however, this is not a realistic assumption. In particular, most of
the pixels collected by hyperspectral imaging instruments contain
the resultant mixed spectra from the reflected surface radiation of
various constituent materials at a sub-pixel level. The presence of
mixed pixels is due to several reasons [6]. First, the spatial resolu-
tion of the sensor is generally not high enough to separate different
pure signature classes at a macroscopic level, and the resulting
spectral measurement can be a composite of individual pure spec-
tra (often called endmembers in hyperspectral analysis terminology)
which correspond to materials that jointly occupy a single pixel.
Second, mixed pixels also result when distinct materials are com-
bined into a microscopic (intimate) mixture, independently of the
spatial resolution of the sensor.

Spectral mixturemodeling (also called spectral unmixing) involves
the separation of a pixel spectrum into its pure component end-
member spectra, and the estimation of the abundance value for each
endmember [7]. Several techniques for spectral unmixing have been
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Fig. 1. The concept of hyperspectral imaging.

Fig. 2. Schematical description of scattering in linear (single scattering) (a) and nonlinear (multiple scattering) (b) mixtures.

developed in the literature. For instance, the linear mixture model
assumes that the collected spectra are linearly mixed [8]. As a re-
sult, a linear (macroscopic) mixture is obtained when the endmem-
ber substances are sitting side-by-side within the field of view of
the imaging instrument (see Fig. 2(a)). The linear model assumes
minimal secondary reflections and/or multiple scattering effects in
the data collection procedure [6]. Subsequently, the resultant mixed
spectrum can be simply expressed as a linear combination of end-
member components, weighted by a scalar endmember abundance
fraction as follows:

r = Ea+ n =
p∑

i=1

ei�i + n, (1)

where r is a pixel vector given by a collection of values at differ-
ent wavelengths, E is a matrix containing p endmember signatures
{ei}pi=1, a is a vector containing the fractional abundance values for
each of the p endmembers in r, and n is a noise vector.

Although the linear mixture model has practical advantages
such as the ease of implementation and flexibility in different ap-
plications, there are many naturally occurring situations where
nonlinear models may best characterize the resultant mixed spectra
for certain endmember distributions [9]. In particular, nonlinear
mixtures generally occur in situations where endmember compo-
nents are randomly distributed throughout the field of view of the

instrument [6], as shown by Fig. 2(b). In those cases, the mixed
spectra collected at the imaging instrument are better described
by assuming that part of the source radiation is subject to multiple
scattering effects before being collected by the sensor. A general
expression for the nonlinear mixture model is given by

r = f (E,a) + n, (2)

where f is an unknown nonlinear function that defines the interac-
tion between E and a. Various learning-from-data techniques have
been proposed in the literature to estimate the f in hyperspectral
imaging applications. For instance, independent component analysis
(ICA) has been proposed in the recent literature as a relevant tech-
nique for handling the inversion in Eq. (2) [10,11]. ICA is an unsu-
pervised source separation process [12] that has shown significant
success in blind source separation, feature extraction, and unsuper-
vised recognition. Another approach that has demonstrated great
potential to decompose mixed pixels is the use of artificial neu-
ral networks, which have demonstrated an inherent capacity to
approximate complex nonlinear functions [13,14]. Although many
neural network architectures exist, for decomposition of mixed pix-
els in terms of nonlinear relationships mostly feed-forward networks
of various layers, such as the multi-layer perceptron (MLP), have
been used [15]. The MLP is typically trained using the error back-
propagation algorithm, a supervised technique of training with three
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