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Dimensionality reduction is a very important tool in data mining. Intrinsic dimension of data sets is a key
parameter for dimensionality reduction. However, finding the correct intrinsic dimension is a challenging
task. In this paper, a new intrinsic dimension estimation method is presented. The estimator is derived
by finding the exponential relationship between the radius of an incising ball and the number of samples
included in the ball. The method is compared with the previous dimension estimation methods. Experi-
ments have been conducted on synthetic and high dimensional image data sets and on data sets of the
Santa Fe time series competition, and the results show that the new method is accurate and robust.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In modern world, scientists frequently encounter large volumes
of data, and data can be converted into vectors in a high dimensional
space such as the national statistics, snapshots of a moving object
and the bio-current generated by millions of nerve sensors. Every
digital image has three million pixels and could be converted into a
vector in a three million dimensional space.

Due to the limitation of computational resources and storage
space, it is difficult to process such data directly. There is a consen-
sus that many types of data in a high dimensional space are not re-
ally high dimensional. Data with a few degrees of freedom could be
regarded as points lying on a low dimensional manifold in a high di-
mensional space [1]. The hidden parameters of the data contain key
information which is of pivotal importance for data visualization,
storage and compression and so on. Dimensionality reduction finds
compact representations of high dimensional samples which pre-
serve the hidden structure for further processing. So dimensionality
reduction plays a very important role in data analysis. Several classi-
cal methods have been proposed to recover parameters underlying
the collected data points such as the principal components analysis
(PCA) [2] and multidimensional scaling (MDS) [3]. PCA finds a linear
space on which the projected data have maximum variance while
MDS projects data points into a lower dimensional space by preserv-
ing pairwise Euclidean distances. But bothmethods can only discover
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linear parameters of the data. Naturally collected data points are fre-
quently distributed on a nonlinear sub-manifold which is embedded
in a high dimensional space. In the nonlinear case like the Swiss
roll data set, linear dimensionality reduction methods will not work.
Recently, several nonlinear dimensionality methods have been pro-
posed to solve the problem, such as the isometric feature mapping
(Isomap) [1], the locally linear embedding (LLE) [4], the Laplacian
eigenmaps [5]and the Hessian LLE [6]. In recent years, Isomap and
LLE have drawn great interests. They are simple to implement and
avoid nonlinear optimization. However, both Isomap and LLE meth-
ods need the precise information of both the input parameters � or
k for the neighborhood identification and the intrinsic dimension d
of the data set. The intrinsic dimension of a data set is very impor-
tant since it is the fundamental information we need to know before
any further analysis could be followed. If the intrinsic dimension d
is set larger than what it really is, much redundant information will
also be preserved; if it is set smaller, useful information of the data
could be eliminated during the dimensionality reduction.

Many methods have been proposed to estimate the intrinsic di-
mension of data sets. Basically these methods could be classified
into two groups [7]: projection methods and geometric methods.
Projection methods, such as the method proposed by Fukunga and
Olsen [8] (which will be referred to as local-PCA estimator), make
use of locally linear projections of the data points, and the intrinsic
dimension d is determined through comparing the largest variance
in directions normal to the subspace with variation in directions of
the subspace. Geometric methods, such as the fractal-based method
[9] and the maximum likelihood estimation method [10], make as-
sumptions on the geometrical distribution of data sets, which will
be explained in detail in Section 2.
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2. Previous works on dimension estimation

As discussed above, the main methods to estimate the intrinsic
dimension of a manifold in a high dimensional space can be classified
into two groups [7]: projection methods and geometric methods.

Projection methods, such as PCA, have shown their capability in
finding the dimension of a linear manifold in a n-dimensional space.
The dimension is estimated by comparing the ratio of the sums of
the top d eigenvalues and the remaining n − d eigenvalues with a
given threshold. However, if the data points distribute on a highly
nonlinear manifold, PCA cannot give a correct intrinsic dimension.
To improve the performance of PCA, kernel PCA [11] applies a Mer-
cer kernel to project the data onto a feature space first and then per-
forms PCA on the feature space. But selecting the appropriate Mercer
kernel is a tricky problem. Under the assumption that the manifold
is locally linear, local-PCA [8] performs PCA locally on the data set to
estimate local dimension. Then the global dimension is determined
by averaging the values of local dimension estimates. Nevertheless,
the segmentation of the local regions is hard to decide. In order to
solve this problem, the optimal topology preserving maps (OTPMs)
was proposed in Ref. [12], which first constructs an optimal topology
preserving map on the selected data centers and then performs PCA
locally on the data centers. OTPMs works well on nonlinear mani-
folds but heavily depends on the choice of the data centers.

Geometric methods can be reviewed as below.

2.1. Fractal-based methods and related work

Fractal-based methods introduce a popular dimension definition,
that is, the box-counting dimension, which is based on the fractal
theory. However, for computational simplicity, the correlation di-
mension is used to replace the box-counting dimension.

Assume that the observations x1, x2, . . . , xn lie on the manifold
M in RD and that the low dimensional embedding samples are in
Rd, where d is unknown and d>D. The correlation integral C(r) is
defined as

C(r) = lim
n→∞

2
n(n − 1)

n∑
i=1

n∑
j=i+1

I(‖xi − xj‖� r),

where I is an indicator function. The correlation dimension D is then
defined as

D = lim
r→0

log(C(r))
log r

. (1)

Based on Eq. (1), Grassberger and Procaccia [13] proposed a di-
rect estimation method of the correlation dimension by measuring
the slope of log(C(r)) versus log r. Camastra and Vinciarelli [14] im-
proved the Grassberger–Procaccia (GP) method using an empirical
procedure. However, for a data set with a finite number of samples,
the limit r → 0 in Eq. (1) will not be achieved. To overcome this
problem, a scale-dependent correlation dimension is introduced in
Ref. [15] based on geometric heuristics and L′ Hospital's rule. As-
sume that Sn = {x1, . . . , xn} is a finite data set, the scale-dependent
capacity dimension is defined as

Dcap(r1, r2) = − logM(r2) − logM(r1)
log(r2) − log(r1)

,

where M(r) is the minimal number of boxes with size r covering Sn.
This method avoids taking limit on a finite data set and does not
require input parameters. However, findingM(r) for Sn is an NP-hard
problem.

A kernel version of the fractal-based method was introduced in
Ref. [16]. This method works by replacing the indicator function I

in the correlation integral C(r) with a generalized kernel function
K(x, y).

2.2. Dimension estimation based on distances between samples and
their neighbors

Assume that the data points are locally uniformly distributed.
Then many authors have used distances between samples and their
nearest neighbors to estimate intrinsic dimensions. Pettis et al. [17]
proposed an iterative algorithm with intrinsic dimension estimator

d = rk
(rk+1 − rk)k

, (2)

where rk is the mean distance between each sample and its k-nearest
neighbors. However, their own experiments show that estimator (2)
is biased. In Ref. [18], Verveer et al. pointed out that the bias cannot
be corrected even with an iterative version. They proposed a non-
iterative algorithm (nearest neighbor estimator):

d =
⎡
⎣kmax−1∑
k=kmin

(rk+1 − rk)rk
k

⎤
⎦ ×

⎡
⎣kmax−1∑
k=kmin

(rk+1 − rk)

⎤
⎦

−1

.

Instead of using a single neighborhood size k, this method uses a
range of neighborhood sizes, k=kmin, kmin+1, . . . , kmax. In Ref. [7], it
is argued that this non-iterative version of the estimator is sensitive
to noisy samples and has edge effects.

Costa et al. [19,20] proposed to estimate the intrinsic dimension
by calculating the length of the k-nearest neighbors (k-NN) graph.
The length of the k-NN graph is defined as

L�,� =
n∑

i=1

∑
x∈N�,i

|x − xi|�,

where N�,i is the set of the neighbors of xi. In Refs. [19,20], Costa
et al. also proved the following relationship between L�,� and the
intrinsic dimension d:

log L�,� = a logn + b + �n,

where a= (d−�)/d, b is an unknown constant to be determined, and
�n is an error residual going to zero with probability 1 as n → ∞.
The estimator works by sub-sampling subsets X1,X2, . . . ,XQ from the
data set X. Assume that

l = [log L1, . . . , log LQ ]
T, A =

[
logn1 · · · lognQ

1 · · · 1

]T

where ni is the cardinality of the subset Xi and Li is the total length of
the k-NN graph for Xi. Then applying the linear least square strategy

yields
∧
a and the estimate

∧
d=round{�/1 − ∧

a}. However, a suitable
selection of the neighborhood size k is difficult.

2.3. Dimension estimation based on distribution assumptions

Recently, in Ref. [10], a maximum likelihood estimation method
was proposed and proved to have a better performance than the pre-
vious dimension estimation methods. Maximum likelihood estima-
tion of intrinsic dimensions provides a maximum likelihood dimen-
sion estimator (MLE-estimator) to the nearest neighbors distances.
Assume that x is an arbitrary data point and Sx(t) is a sphere of ra-
dius t and centered at x. Consider the binomial function

N(t, x) =
n∑

i=1

I(Xi ∈ Sx(t)).
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