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Combining reduced technique with iterative strategy, we propose a recursive reduced least squares sup-
port vector regression. The proposed algorithm chooses the data which make more contribution to target
function as support vectors, and it considers all the constraints generated by the whole training set. Thus
it acquires less support vectors, the number of which can be arbitrarily predefined, to construct the model
with the similar generalization performance. In comparison with other methods, our algorithm also gains
excellent parsimoniousness. Numerical experiments on benchmark data sets confirm the validity and
feasibility of the presented algorithm. In addition, this algorithm can be extended to classification.
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1. Introduction

Support vector machine (SVM) [1–3] has been gaining more
and more in popularity and is regarded as one state-of-the-art tool
for solving pattern recognition and regression estimation problem
and has been demonstrated to be valuable for many real-world
applications. However, the training computational burden is very
expensive, say, O(N3), where N is the total size of training patterns.
In the past few years, many algorithms speeding up SVM have been
proposed, taking Chunking [4], SMO [5], ISMO [6], SVMLight [7],
SVMTorch [8], and LIBSVM [9] for example. The time complexity of
these algorithms is T ·O(Nq+ q), where T is the number of iterations
and q is the scale of working set. There exists one common draw-
back about these algorithms which is that they only accelerate the
training speed without speedup the predicted speed which is pro-
portional to the number of support vectors. SVM is a sparse machine
learning algorithm in theory, but the parsimoniousness of the solu-
tion is not as good as what we expect [10]. In order to besiege the
dilemma, Lee and Mangasarian [11] proposed to restrict the number
of support vectors by solving the reduced support vector machine
(RSVM). The main characteristic of this method is randomly selecting
a subset of training data, as little as 1–10% of the large training pat-
terns, considered as candidates of support vectors. RSVM is different
from traditional directly solving smaller SVM problems with subset
of training data because the N constraints in the primal are still
kept during the optimization process, which maybe enhancing the
generalization performance. However, Lin and Lin [12] showed that
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the testing accuracy of RSVM is a little lower than normal SVM.
Recently, Lee and Huang [13] gave out the statistical theory for RSVM.

Using equality constraints instead of inequality, a variable SVM,
called least squares support vector machine (LSSVM) [14,15], was
proposed. Extensive empirical comparisons show that LSSVM ob-
tains good performance on various classification problems [16].
However, there exists one obvious limitation. In comparison with
normal SVM, LSSVM is not parsimonious, which blocks its predicted
speed, i.e., slower than SVM. In recent years, considerable atten-
tions have been paid to the aforementioned limitation. Suykens
et al. [17] and Chu et al. [18], respectively, presented a conjugate
gradient algorithm and the improved form to speed up the training
speed, and Keerthi and Shevade [19] successfully applied sequential
minimal optimization (SMO) algorithm to LSSVM. However, the
resultant models are not parsimonious using these algorithms. That
is to say, the limitation still exists. As for obtaining parsimonious
model, several tricks are proposed. Suykens et al. [20] proposed
a simple approach to introduce the parsimonious model. de Kruif
et al. [21] presented a pruning mechanism to omit the vectors
which bore the least errors. Based on SMO, Zeng and Chen [22]
gave another pruning method. Recently, Kuh et al. [23] speeded
up the method proposed by de Kruif et al., and Jiao et al. [24]
introduced a fast approach to establish the parsimonious LSSVM.
However, the collective defect of these tricks is without consider-
ing the constraints brought by other vectors, so called non-support
vectors, during building the parsimonious model of LSSVM. This
more or less affects the parsimoniousness of LSSVM, because there
are not non-support vectors for LSSVM, so called non-support vec-
tors generated by some compulsive strategies. If we completely
discard the constraints generated by non-support vectors, it is
not reasonable in a way. So we can apply the reduced technique,
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which considers the whole N constraints during the optimization
process, to LSSVM [25]. From Ref. [12], we know that if we ran-
domly select a subset from training patterns as training data set, it
will degrade the test accuracy. Combining the iterative strategy in
Ref. [24] with the reduced technique, a recursive reduced least
squares support vector regression (RR-LSSVR) is proposed. RR-LSSVR
gains advantage over the common parsimonious tricks, since it is
involved in the whole constraints generated by all training patterns
in the modeling process. Meantime, in comparison with randomly
selecting subset to build the reduced least squares support vector
regression, RR-LSSVR needs less scale subset, which will shorten
predicted time and strengthen parsimoniousness.

This paper is organized as follows. In Section 2 we will briefly
introduce the reduced least squares support vector regression.
Section 3 describes the proposed RR-LSSVR, and we provide the
proof of RR-LSSVR's convergence. In the following section, bench-
mark data sets confirm the validity and feasibility of our algorithm
and we compare it with other methods. The discussion and conclu-
sion follow in Section 5.

2. Reduced least squares support vector regression

In this section, we will concisely introduce the reduced least
squares support vector regression. Considering a regression problem
with training patterns {(xi, di)}Ni=1 where xi is the input pattern and
di is the corresponding target. Using kernel function, we can obtain
a nonlinear predictor called least squares support vector regression
(LSSVR) through solving the following optimization problem:

min
w,e

⎧⎨
⎩1
2
wTw + C

2

N∑
i=1

e2i

⎫⎬
⎭

s.t. di = wT�(xi) + b + ei, i = 1, . . . ,N (1)

where w represents the model complexity, e = [e1, . . . , eN]
T, C ∈ �+

is the regulator, �( · ) is a nonlinear mapping which maps the input
data into a high-dimensional feature space whose dimension can be
infinite. One defines the Lagrangian

L(w, b, e; ā) = 1
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where �̄i’s are the Lagrange multipliers, which can be either positive
or negative.
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Eliminating the variables w and ei's, we can get the following linear
equations:[
0 �1T
�1 K̄

][
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ā

]
=
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0

d

]
(4)

where �1=[11, . . . , 1N]
T, ā=[�̄1, . . . , �̄N]

T, d=[d1, . . . ,dN]
T, K̄ij=k(xi, xj)=

�(xi)
T�(xj) + �ij/C with

�ij =
{
1, i = j,

0, i� j,
i, j = 1, . . . ,N

k( · , · ) is the kernel function, which can be expressed as the inner
product of two vectors in some feature space. Among all the kernel
functions, Gaussian kernel k(xi, xj)=exp(−‖xi−xj‖2/2�2) is the most
popular choice. For a new pattern x, we can predict its target by

f (x) = wT�(x) + b =
N∑
i=1

�̄ik(xi, x) + b (5)

where ā and b are the solutions of Eq. (4).
From Eq. (5), we understand that LSSVR is not parsimonious. After

letting w = ∑
i∈S�ik(xi, ·) and substituting it into Eq. (1) where the

subset {(xi, di)}i∈S ⊂ {(xi,di)}Ni=1, we get the corresponding form as
follows:
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where Kij = k(xi, xj), i, j ∈ S. Let �L/�b = 0 and �L/��i = 0, so the
following linear equations are gained:

(R + ZZT)

[
b

a

]
= Zd (7)

where

R =
[
0 0T

0 K/C

]
, Z =

[ �1T
K̂

]

with K̂ij = k(xi, xj), i ∈ S, j = 1, . . . ,N. In Eq. (7), if R + ZZT is singular,

a small change R + ZZT + 10−8I will find the solution. Therefore we
find the reduced predictor for a new sample x:

f (x) =
∑
i∈S

�ik(xi, x) + b (8)

This is the reduced least squares support vector regression.

3. Recursive reduced least squares support vector regression

From Eq. (8), we know that the subset {(xi, di)}i∈S is not de-
termined. If we select the subset randomly, it leads to either re-
duced LSSVR is not parsimonious enough or the test accuracy is
degraded. So it is especially important to select the subset. The
patterns selected should represent the main characteristics of the
whole training data set, i.e., they take crucial roles in constructing
the reduced LSSVR model. Under the illumination of Ref. [24], we
pick up the patterns which make more contribution to optimization
target (6) to form the subset. Reformulating (6), we have
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3.1. Iterative computation of the kernel matrix inversion

We unfold (7) as follows firstly:([
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