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Abstract

Over the past decades, regularization theory is widely applied in various areas of machine learning to
derive a large family of novel algorithms. Traditionally, regularization focuses on smoothing only, and
does not fully utilize the underlying discriminative knowledge which is vital for classification. In this
paper, we propose a novel regularization algorithm in the least-squares sense, called discriminatively
regularized least-squares classification (DRLSC) method, which is specifically designed for classification.
Inspired by several new geometrically motivated methods, DRLSC directly embeds the discriminative in-
formation as well as the local geometry of the samples into the regularization term so that it can explore
as much underlying knowledge inside the samples as possible and aim to maximize the margins between
the samples of different classes in each local area. Furthermore, by embedding equality type constraints
in the formulation, the solutions of DRLSC can follow from solving a set of linear equations and the
framework naturally contains multi-class problems. Experiments on both toy and real world problems
demonstrate that DRLSC is often superior in classification performance to the classical regularization
algorithms, including regularization networks, support vector machines and some of the recent studied
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manifold regularization techniques.
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1. Introduction

Regularization methods for machine learning have made great
progress recently. Such methods have been extended to several sub-
areas of machine learning, including regression, clustering and clas-
sification [1-9].

Arelated area under extensive development is the manifold learn-
ing area, where methods have been developed to take advantage of
the locality information while performing dimensionality reduction.
In this area, Belkin et al. [5,10] further introduced the underlying
sample distribution information of the data with manifold structures
into the traditional regularization, resulting in manifold regulariza-
tion (MR), which aims to retain the manifold structure of the sam-
ples in each given class. In the framework of MR, two regularization
terms are introduced: one controls the complexity of the classifier,
and the other controls the complexity measured by the manifold
geometry of the sample distribution [5].
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However, when focusing on classification problems, we notice
that each of the above methods alone suffers from some deficien-
cies. First, although the traditional regularization methods have
been widely applied to the classifier design, it is essentially derived
from multivariate functional fitting or regression problems instead
of classification problems [2,11-13]. It constructs the regularization
term by focusing more on the smoothness of the function. However,
in classification, similar inputs near the discriminant boundaries
are more likely to belong to different classes, implying that just
a smoothness constraint may not be sufficient for discrimination
among classes. In particular, a classifier may not be always smooth
everywhere, especially when we are near the boundaries between
classes. Furthermore, the primary goal of classification is to sepa-
rate the samples of different classes in the output space as far as
possible. Hence, the underlying discriminative information is crucial
for classification. However, since the regularization terms of the
traditional regularization methods do not inject more underlying
class information in a classifier’s design, they may not incorporate
all the useful discriminative information for classification.

Second, although MR performs well in semi-supervised learning
such as sensor networks [14], for supervised learning, MR suggests
constructing a graph or Laplacian matrix for each class, which results
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in an equal number of the regularization terms that is the same as
the number of classes. As a result, dependency on the number of
given classes makes MR difficult to scale well. The algorithm may
perform badly in cases of small number of classes (e.g., three or so
classes), whereas the computational complexity in the training phase
of MR will increase sharply, because making an optimal tuning for
the many regularization parameters is impractical.

In this paper, we propose a novel method for classification that, by
the well-known “No Free Lunch” Theorem [15], integrates as much
underlying knowledge inside the samples as possible, including the
discriminative and geometrical information, into a unified regular-
ization framework. We call our method DRLSC, which stands for dis-
criminatively regularized least-squares classification. By making the
best of the underlying discriminative information rather than only
emphasizing the smoothness of the classifier in the traditional reg-
ularization methods, DRLSC introduces a new discriminative regu-
larization term in the framework. Furthermore, inspired by the new
supervised dimensionality reduction methods, DRLSC also uses two
graphs to characterize the intra-class compactness and inter-class
separability, respectively, and thus can further maximize the mar-
gins between the samples of the different classes in each local area.
DRLSC integrates the underlying discriminative and geometrical infor-
mation into a single regularization term. A major advantage is that
it can scale well with the number of the classes. In addition, by in-
troducing the equality constraints in the formulation, the solutions
of DRLSC can be found by solving a set of linear equations, which
makes the algorithm simpler and more stable. Experiments are con-
ducted to demonstrate the superiority of our DRLSC algorithm com-
pared well with the state-of-the-art regularization methods such as
regularization networks (RN), generalized radial basis function net-
works (GRBFN), support vector machines (SVM), least squares sup-
port vector machines (LS-SVM) and manifold regularization (MR).

The rest of the paper is organized as follows. Section 2 intro-
duces the related works in regularization. Our contributions are sim-
ply described in Section 3. Section 4 presents the proposed DRLSC.
The analytic solution to DRLSC is derived in Section 5. In Section
6, the experiment analysis is given. Some conclusions are drawn
in Section 7.

2. Related works

Ill-posed problems widely exist in science and engineering re-
gions, which denotes that given the available input samples, the so-
lution to the problem is nonunique or unstable [2,16]. Early in the
1960s, Tikhonov had proposed a classical method named regular-
ization to solve these problems [17,18]. By incorporating the right
amount of prior information into the formulation, the regularization
techniques have been shown to be powerful in making the solu-
tion stable [2,16]. In the past few decades, the regularization theory
was introduced to the machine learning community on the premise
that the learning can be viewed as a multivariate functional fitting
problem [2,11-13]. Consequently, in the classical Tikhonov regular-
ization, the most common form of prior information involves the as-
sumption that the input-output mapping function, i.e., the solution
to the fitting problem, is smooth [16,19]
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where V(yj,f(xi)) is the loss function, which indicates the penalty we
pay when we see x;, predict f(x;), and the true value is y; [7]. In the
regularization term, D is a linear differential operator that is applied
to the function f, in which the prior information about the form of
the solution is embedded [16]. D is also referred to as a stabilizer
because the smoothness prior involved in it makes the solution stable

[2,16]. Moreover, the regularization parameter A controls the trade-
off between fitting the training samples and the roughness of the
solution [2,7].

Tikhonov [17,18] presented that when the loss function is desig-
nated to be the simple square-loss function

V(3. f(x)) = (v — f(x))? 2)

the solution f;(x) to the Tikhonov regularization problem can be
represented as a linear combination of the Green’s function [16]
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Poggio and Girosi [11,12] showed that a regularization algorithm
for learning is equivalent to a multilayer neural network with the
Green’s function as the activation function, resulting in the RN.
Haykin [16] indicated that if we select a multivariate Gaussian func-
tion as the Green’s function, the solution by RN will be an optimal
interpolant in the sense that it minimizes the Tikhonov regulariza-
tion formula. GRBFN is an approximation of the RN, for its number
of the hidden units is typically less than that of the RN’s, which is
equivalent to the number of the training samples.

In the classical regularization theory, a recent trend in studying
the smoothness of the function is to put the function into the re-
producing kernel Hilbert space (RKHS) [6,20], which has been well
developed in several areas [2]. In the RKHS, the Tikhonov minimiza-
tion problem can be rewritten as [21]:
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Following the so-called Representer Theorem [20,22,23], under very
general conditions on the loss function V, the minimizer of Eq. (4)
will have the form

N
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Corresponding to different selections of V, the classical Tikhonov
regularization method can be used to derive a large family of the
state-of-the-art algorithms in machine learning. When selecting V as
the square-loss function, we obtain regularized least-squares classi-
fication (RLSC) [21]. Similarly, we can obtain SVM [1,24] by choosing
V to be the hinge-loss function defined as

if yf(x)>1
otherwise

V(y.f(x)) = { 0 (6)
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Specifically, if we introduce error terms into the hinge-loss function
and consider the equality constraints instead of inequalities in SVM,
we obtain the LS-SVM with the formulation in the least-square sense
[25]. Though introducing dissimilar loss functions, these regulariza-
tion algorithms have many inherently similar properties. Evgeniou
et al. [26] described a unified framework for RN and SVM. Rifkin [21]
indicated that RLSC empirically performs as good as SVM.

Although traditional regularization has been widely applied to
the classifier design, it focuses more on the smoothness of the clas-
sification function owing to the essential derivation from ill-posed
multivariate functional fitting problems as we mentioned above, to
enforce the constraint that similar inputs correspond to similar out-
puts. This constraint is natural for regression problems. But, it also
seems to be too general for classification. Since the regularization
terms of the traditional regularization methods do not inject more
underlying class information, they may not incorporate all the useful
discriminative information for classification.



Download English Version:

https://daneshyari.com/en/article/532753

Download Persian Version:

https://daneshyari.com/article/532753

Daneshyari.com


https://daneshyari.com/en/article/532753
https://daneshyari.com/article/532753
https://daneshyari.com

