
Pattern Recognition 40 (2007) 3652–3666
www.elsevier.com/locate/pr

VCPSS:A two-in-one two-decoding-options image sharing method
combining visual cryptography (VC) and polynomial-style sharing (PSS)

approaches

Sian-Jheng Lin, Ja-Chen Lin∗

Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan, ROC

Received 17 January 2006; received in revised form 4 April 2007; accepted 5 April 2007

Abstract

This paper presents a novel method to combine two major branches of image sharing: VC and PSS. n transparencies are created for a given
gray-valued secret image. If the decoding computer is temporarily not available at (or, not connected to) the decoding scene, we can still
physically stack any t received transparencies (t �n is a threshold value) to get a vague black-and-white view of the secret image immediately.
On the other hand, when the decoding computer is finally available, then we can get a much finer gray-valued view of the secret image using
the information hidden in the transparencies. In summary, each transparency is a two-in-one carrier of the information, and the decoding has
two options.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Hiding using block-types; Image sharing; (t, n) threshold scheme; Halftone version; Compression

1. Introduction and goal

Image sharing can be used in a team when no member
alone should be trusted. Visual cryptography (VC) [1–7] and
polynomial-style sharing (PSS) [8–14] are both well-known
branches to share images. Both can be designed as (t, n)

schemes. (In this paper, we say that a sharing technique is
(t, n) if and only if it shares a secret image S among n shad-
ows so that any t of the n shadows (n� t) can unveil the secret
image S (or a compressed version S(comp) of S), whereas less
than t shadows cannot.) Although both VC and PSS can share
images, they are quite different in many manners. Table 1
below compares VC and PSS.

In Table 1, if we temporarily ignore the final column (which
is for the future comparison use in the experiment section,
we list this column here just to save paper’s space), we can
see that VC is simple and fast, while PSS gives good image
quality. A question arises naturally: “Can VC be combined with
PSS?” To certain extent, the answer is positive, as is shown
here. In this paper, we present a method to combine these two

∗ Corresponding author. Fax: +886 3 5721490.
E-mail address: jclin@cis.nctu.edu.tw (J.-C. Lin).

0031-3203/$30.00 � 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2007.04.001

techniques and achieve a goal: if the decoding computer is tem-
porarily not available in (or, not connected to) the decoding
scene, we can still physically stack the t received shadows to
get a vague black-and-white view of the secret image imme-
diately; later, when the computer is finally available, we can
get a much finer gray-valued view of the secret image using
the information hidden earlier in the shadows by using PSS.
(Hereinafter, the final output of the proposed method will be
called as “transparencies” rather than “shadows” because, as
mentioned above, one of the two decoding manners is that the
shadows can be stacked physically for viewing, just like ordi-
nary transparencies can be stacked and viewed.)

Below in Section 2 we first review some background knowl-
edge used in this paper, and then in Section 3 we introduce our
method. The experimental results are in Section 4, and the con-
clusions are in Section 5. Section 6 describes an application of
this paper.

2. Background

Some background knowledge is reviewed in this section.
Section 2.1 reviews the basis matrices roughly, which is a

http://www.elsevier.com/locate/pr
mailto:jclin@cis.nctu.edu.tw

S.-J. Lin, J.-C. Lin / Pattern Recognition 40 (2007) 3652–3666 3653

Table 1
A comparison between VC and PSS

Visual cryptography Polynomial-style Ours
(VC, see [1–7]) sharing (PSS, see [8–14]) (VC + PSS)

Usually, the input secret image S is Black-and-white Gray Gray

Decoding speed (and decoding Instant (by using eyes after Slow (by computation) Instant in Layer 1; slow in Layer 2.
method) stacking shadows)

Is a computer needed in decoding? No Yes “No” in Layer 1;
“yes” in Layer 2.

Recovered image’s perceptual quality Vague Fine Vague in Layer 1;
fine in Layer 2.

Size of each shadow Larger than that of S Can be smaller than that of S Either the length or the width of
a (binary) transparency is larger
than that of S, but the number of
computer-storage bytes needed can
be smaller than S’s.

background knowledge well known in VC field; Section 2.2
reviews the PSS technologies, including Shamir’s [14] and
Thien and Lin’s [8].

2.1. A review of the basis matrices [B0] and [B1] for VC

Below we review the two basis matrices [B0] and [B1] often
mentioned in VC field (e.g. see Ref. [1]). The matrix B0 is
called a “white matrix” because it is useful to produce blocks
whose stacking result will represent white pixels of a black-
and-white (e.g. halftone) image. Matrix [B1] is called a “black
matrix” for analogous reason. Without the loss of generality,
below we only show the case (t, n) = (2, 4), i.e. only two out
of four shares are needed in recovering. For a general pair of
given values (t, n), the readers may either design their own
[B0] and [B1], or use the Appendix to create some pairs of
[B0] and [B1]. In fact, even if the values of t and n are fixed,
the choice of [B0] and [B1] is still not unique. To apply the
proposed VCPSS two-in-one sharing method, people can use
any pair of [B0] and [B1] satisfying the requirements (i)–(iii)
stated in next paragraph (these three requirements also appear
in the Appendix). In summary, the pair [B0] and [B1] is not
necessarily generated from the Appendix; the Appendix is just
to let readers know that there always exists at least one solution
to find out [B0] and [B1].

In the (t, n)= (2, 4) case, one of the several possible choices
for the white matrix [B0] and the black matrix [B1] is to use

[B0] =
⎡
⎢⎣

0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1

⎤
⎥⎦ and [B1] =

⎡
⎢⎣

0 0 1 1
1 1 0 0
0 1 1 0
1 0 0 1

⎤
⎥⎦ .

(1)

Both matrices have n = 4 rows. (In general, no matter how we
assign the two matrices, each matrix must have n rows if n

transparencies are to be created. This is the so-called require-
ment (i).) In both matrices, each 0 means that a white element

is painted there, and each 1 means a black element is painted
there. As we can see, both [B0] and [B1] have two black ele-
ments per row. (In general, the number of 1’s appearing in each
row of [B0] must be identical to that of [B1]. This is the so-
called requirement (ii).) It is also obvious that if we stack any
two (=t) rows of our [B0], the stacking result has two black
elements and two white elements. On the other hand, if we stack
any two (=t) rows of [B1], the stacking result has at least three
black elements. (In general, no matter how we choose [B0] and
[B1], the number of 1’s contained in the result of stacking any
t rows of [B1] must exceed that of stacking any t rows of [B0].
This is the so-called requirement (iii).)

Now, assume that we want to create 4(=n) blocks, each is
2×2 in size, so that stacking any 2(=t) of them will yield a 2×2
so-called “white block” (defined here as a block in which only
two of the four elements are 1’s (i.e. only two black elements)).
All we have to do is to permute the columns of [B0] randomly,
and then distribute the 4(=n) rows of the permuted [B0] to four
customers. After that, each customer uses the first two elements
as the first row of his block, and next two elements as the 2nd

row of his block. As a result, each of the 4(=n) customers has
his own 2 × 2 block, and any two of these four 2 × 2 blocks
can be stacked to yield a 2 × 2 white block (only two of its
2 × 2 = 4 elements are 1’s).

Similarly, if we want that any t (=2) of the n(=4) created
blocks (each is still 2 × 2 in size) can be stacked to yield a
so-called “black block” (defined as a 2 × 2) block in which at
least three of the four elements are 1’s (i.e. at least three black
elements), then we only have to replace the role of [B0] by [B1]
in the above argument and obtain four blocks corresponding to
[B1]. Then distribute these four blocks arbitrarily to the four
customers (one block per customer).

In the above example, each block has w = 2 white elements
and b = 2 black elements, (or equivalently, each row of [B0] or
[B1] has two white elements and two black elements), and the
permutation of the columns of [B0] or [B1] will not affect the
stacking result’s brightness (i.e. number of black elements of

Download English Version:

https://daneshyari.com/en/article/532842

Download Persian Version:

https://daneshyari.com/article/532842

Daneshyari.com

https://daneshyari.com/en/article/532842
https://daneshyari.com/article/532842
https://daneshyari.com

