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Self-calibration of a stereo rig using monocular epipolar geometries
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Abstract

This paper addresses the problem of self-calibration from one unknown motion of an uncalibrated stereo rig. Unlike the existing methods for
stereo rig self-calibration, which have been focused on applying the autocalibration paradigm using both motion and stereo correspondences,
our method does not require the recovery of stereo correspondences. Our method combines purely algebraic constraints with implicit geometric
constraints. Assuming that the rotational part of the stereo geometry has two unknown degrees of freedom (i.e., the third dof is roughly known),
and that the principle point of each camera is known, we first show that the computation of the intrinsic and extrinsic parameters of the
stereo rig can be recovered from the motion correspondences only, i.e., the monocular fundamental matrices. We then provide an initialization
procedure for the proposed non-linear method. We provide an extensive performance study for the method in the presence of image noise. In
addition, we study some of the aspects related to the 3D motion that govern the accuracy of the proposed self-calibration method. Experiments
conducted on synthetic and real data/images demonstrate the effectiveness and efficiency of the proposed method.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Self-calibration; Stereo rig; Intrinsic and extrinsic parameters; Cooperative stereo-motion; Epipolar geometry; Correspondence problem; Non-linear
optimization

1. Introduction

In the last decade a number of researchers developed self-
calibration methods for vision sensors that require no known
reference object. Such methods can be used to determine the
intrinsic camera parameters, the stereo geometry as well as the
3D shape of the observed scene (see Refs. [1–7], for a sin-
gle moving camera and Refs. [8–14], for a moving stereo rig).
The usefulness of the self-calibration techniques can be tangi-
ble in some cases where the sensor parameters are subject to
variations and no known reference objects are available (active
vision, space robots). In Ref. [10], authors use stereo corre-
spondences across a sequence of stereo pairs. Using different
projective reconstructions that are associated with each stereo
pair, they propose an algorithm for the recovery of the inter-
nal parameters and the 3D Euclidean shape. In Ref. [3], a sim-
ilar strategy dealing with planar scenes has been developed.
In Ref. [13], authors use motion and stereo correspondences
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across two stereo pairs (one motion of the stereo rig). They
propose a method that simultaneously recovers the two inter-
nal parameters and the motion of each camera as well as the
stereo geometry. The proposed method relies on minimizing
the discrepancies between the features and their epipolar lines.

All previous self-calibration techniques for stereo assume
that the stereo correspondences are given. In general, solving
the correspondence problem between left and right images (the
two cameras are termed as the left and the right cameras here)
has been proved to be a difficult problem. Several factors make
the stereo correspondence problem difficult: occlusions, large
disparities, little overlap, photometric and figural distortions.
One can notice that significant differences in the cameras’ char-
acteristics like the gain and the resolution make the stereo corre-
spondence problem even more challenging. On the other hand,
in many cases it is much easier to find motion correspondences
than solving for stereo correspondences.

In this paper, we address the following problem. Given two
uncalibrated stereo pairs of unknown and arbitrary scenes ob-
tained by a general and unknown motion, we like to recover
the intrinsic and extrinsic parameters of the stereo rig without
solving the stereo correspondence problem. Unlike the existing
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methods for stereo rig self-calibration which consider motion
and stereo correspondences as given, our approach uses mo-
tion correspondences only. Hence, all problems encountered by
stereo correspondence can be avoided.

The organization of this paper is as follows. Section 2
presents some backgrounds as well as the problem we are fo-
cusing on. Section 3 presents the recovery of the intrinsic and
extrinsic parameters of a stereo rig using monocular epipolar
geometries. Section 4 provides an initialization method for
the proposed non-linear method. Section 5 provides a per-
formance study of the developed method in the presence of
image noise. Section 6 studies some accuracy issues related
to the 3D motion of the stereo rig. Section 7 describes ex-
periments with real images. Finally, Section 8 provides some
conclusions.

2. Backgrounds and problem formulation

2.1. Backgrounds

This study deals with the estimation of stereo rigs’ intrinsic
and extrinsic parameters from uncalibrated images. In order
to make the paper self-contained, we briefly describe in this
section the terminology of the main parameter entities, namely
the camera matrix, the rigid displacement, and the fundamental
matrix. Interested readers can find more details in Refs. [15,16].
In the sequel, vectors will be denoted by bold lower-case letters
and matrices by bold capital letters. The transpose symbol will
be denoted by T. For example, KT denotes the transpose of the
matrix K.

(1) The camera matrix: The camera matrix (also known as the
calibration matrix) represents the perspective projection of
3D scenes onto the 2D image plane. By setting the world
coordinate system to the camera coordinate system and by
adopting the pinhole camera model, the camera matrix is
represented by a 3 × 3 matrix, K:

K =
(� s u0

0 � v0
0 0 1

)
,

where � is the focal length of the camera expressed in
horizontal pixels, � is the focal length expressed in verti-
cal pixels, s is the skew factor and (u0, v0) is the principal
point—the intersection of the optical axis with the image
plane. These five parameters are called the camera intrinsic
parameters since they depend only on the electronic and
optical characteristics of the camera. In general, the skew
factor is set to zero—assuming that the image axes are
orthogonal. Thus, the camera matrix is described by four
parameters. When the camera is calibrated, i.e., the intrin-
sic parameters are known (using a calibration algorithm),
then the 2D projection onto the image plane (perspective
projection) of any given 3D point will be straightforward.
Any given 3D point whose 3D coordinates are (X, Y, Z)T

will be projected on a point whose homogeneous im-
age coordinates (x, y, 1)T are given by K (X, Y, Z)T,

i.e.,
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where � is a non-zero scalar. In the above equation, the 3D
coordinates are expressed in the camera coordinate system.
Using non-homogeneous image coordinates, the above ma-
trix equation reduces to the following two equations:

x = �
X

Z
+ u0,

y = �
Y

Z
+ v0.

(2) The rigid displacement: The rigid displacement is a change
of Euclidean coordinates in 3D space. This transform is
composed of a 3D rotation and a 3D translation. The rota-
tion is represented by a 3 × 3 orthogonal matrix R and the
translation by a 3-vector t. Therefore, a rigid displacement
has six degrees of freedom (dof). Any rigid transform can
be represented in a matrix form using the following:

D =
(

R t
0T 1

)
.

The use of a 4×4 matrix whose fourth row is (0, 0, 0, 1) is
very useful for dealing with homogeneous coordinates as
well as for composing several transforms. One can notice
that the same 4×4 matrix can be used for representing rigid
body motions. In this study, the rigid displacement will be
used for representing three entities: (1) the relative pose
between the two cameras composing the stereo rig—the
stereo rig geometry, (2) the 3D motion of the right camera,
and (3) the corresponding left camera 3D motion. In the
sequel, these entities will be denoted by Ds , Dr , and Dl ,
respectively.

(3) The epipolar geometry and the fundamental matrix: When
the points in space and the two cameras (or two different
views captured by the same camera) are in general posi-
tion, it is not possible to predict the correspondence p′ of
a point p. Let p′ and p be their respective homogeneous
2D coordinates—3-vectors. However, p′ in the second im-
age is not arbitrary: the corresponding 3D point P has to
lie along the optical ray of p, and therefore p′ is necessar-
ily located on the projection of that optical ray in the sec-
ond camera. This 2D line is called the epipolar line of the
point p in the second image (see Fig. 1). The relationship
between the point p and its epipolar line l′p in the second
image is projective linear. Therefore, there is a 3×3 matrix
which describes this correspondence, called the fundamen-
tal matrix, giving the epipolar line of the point p: l′p =Fp.
If two points p and p′ are in correspondence, then the point
p′ belongs to the epipolar line of p, therefore they satisfy
the epipolar constraint:

p′TFp = 0.
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