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Domain described support vector classifier for
multi-classification problems
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Abstract

In this paper, a novel classifier for multi-classification problems is proposed. The proposed classifier, based on the Bayesian optimal
decision theory, tries to model the decision boundaries via the posterior probability distributions constructed from support vector domain
description rather than to model them via the optimal hyperplanes constructed from two-class support vector machines. Experimental
results show that the proposed method is more accurate and efficient for multi-classification problems.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Support vector machines (SVMs), originally formulated
for two-class classification problems, have been successfully
applied to diverse pattern recognition problems and have
become in a very short period of time the standard state-
of-the-art tool. The SVMs, based on the structured risk
minimization (SRM), are primarily devised in order to min-
imize the upper bound of the expected error by optimizing
the trade-off between the empirical risk and the model com-
plexity [1–3]. To achieve this, they construct an optimal hy-
perplane to separate binary class data so that the margin is
maximal.

Since many real-world applications are multi-class clas-
sification problems, several approaches to extend two-class
SVMs to a multi-class SVM for multi-category classifica-
tions have been proposed. Most of the previous approaches
try to decompose a multi-class problem to a set of multiple
binary classification problems where two-class SVMs can
be trained and applied. For example, one-against-all algo-
rithm transforms a c-class problem into c two-class problems
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where one class is separated from the remaining ones;
one-against-one (pair-wise) algorithm converts the c-class
problem into c(c − 1)/2 two-class problems where pairwise
optimal hyperplanes for each pair of classes are constructed
and max-voting strategy is used to predict their classes, and
so on (cf. [4,5]). These approaches, however, have some
drawbacks inherent in the architecture of multiple binary
classifications: some unclassifiable regions may exist if a
data point belongs to more than one class or to none, result-
ing in low accuracy in correct classification. Also, to train
two-class SVMs multiple times for the same data set re-
peatedly often results in a highly intensive time complexity
for large scale problems.

To overcome such drawbacks, in this paper, we propose a
novel support vector classifier for multi-classification prob-
lems. The proposed classifier, based on the Bayesian opti-
mal decision theory, tries to model the posterior probability
distributions via support vector domain description (SVDD)
[6,7] rather than to model the decision boundaries by con-
structing optimal hyperplanes. The performance of the pro-
posed method is confirmed through simulation.

The organization of this paper is as follows. In Sec-
tion 2, we review the Bayesian optimal decision theory
and briefly outline a SVDD algorithm. A novel method
for multi-classification problems is proposed in Section 3
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with an illustrative example and Section 4 provides the the-
oretical basis of the proposed method. In Section 5, simula-
tion results are given to illustrate the effectiveness and the
efficiency of the proposed method.

2. Previous works

In this section, we first review the Bayesian optimal de-
cision theory and describe the existing density estimation
algorithms. Then we briefly outline the SVDD algorithm
employed in our proposed method.

2.1. Bayesian optimal decision theory

According to the Bayesian decision theory, an optimal
classifier can be designed if we know the prior probabil-
ities p(wi) and the class-conditional densities p(x|wi),
that is, with Bayes formula, the posterior probabilities are
given by

p(wi |x) = p(x|wi)p(wi)

p(x)

= p(x|wi)p(wi)∑c
i=1p(x|wi)p(wi)

, (1)

where c is the number of output class labels. The optimal
decision rule to minimize the average probability of error
can then be shown to be the Bayesian decision rule [8,9] that
selects the wi maximizing the posterior probability p(wi |x)

as follows:

Decide wi if p(wi |x) > p(wj |x) for all j �= i. (2)

In typical classification problems, estimation of the prior
probabilities presents no serious difficulties (normally all
are assumed to be equal or Ni/N ). However, estimation
of the class-conditional densities is quite another matter.
During the last decades, lots of density estimation algo-
rithms have been proposed and the existing density esti-
mation algorithms may generally be categorized into three
approaches: parametric, semi-parametric, and nonparametric
methods.

Parametric methods assume a specific functional form of
p(x|wi) to contain a number of adjustable parameters. The
simplest and the most widely used form is a normal distri-
bution given by

p(x|wi, �i , �i ) = 1

(2�)(d/2)|�i |1/2

exp

(
−1

2
(x − �i )

T�−1
i (x − �i )

)
. (3)

The drawback of such an approach is that a particular form
of parametric function might be incapable of describing the
true data distribution.

Second, semi-parametric methods have a form of finite
mixtures of Gaussians as follows:

p(x|wi, �1, . . . , �M) =
M∑

k=1

p(x|wi, �k, k)p(k), (4)

where p(x|wi, �k, k) is a kth component in the form of
Gaussian function and p(k) are mixing parameters. In semi-
parametric methods, training data do not provide any com-
ponent labels to say which component was responsible for
generating each data point. To select the number of compo-
nents and to estimate its parameters, however, we need to in-
corporate with an iterative scheme such as an EM algorithm,
which often proved to be highly computationally extensive.

The third approach is nonparametric methods which es-
timate the class-conditional density function as a weighted
sum of a set of kernel functions, K(·, ·), to be determined
entirely by the data

p(x|wi) =
N∑

j=1

�jK(xj , x). (5)

Though such methods have the most descriptive capability,
they typically suffer from the problem that the number of
parameters grows with the size of the data set, so that the
models can quickly become unwieldy.

2.2. Support vector domain description

The existing methods for density estimation have a trade-
off between a descriptive ability and a computational burden.
To solve this problem, our proposed method utilizes a so-
called trained kernel support function that characterizes the
support of a high dimensional distribution of a given data
set, inspired by the SVMs. We first review a support vector
domain description (SVDD) procedure (also called a one-
class support vector machine). Then we build a trained kernel
support function, to be used as a pseudo-density function,
via SVDD.

The basic idea of SVDD is to map data points by means
of a nonlinear transformation to a high dimensional feature
space and to find the smallest sphere that contains most
of the mapped data points in the feature space [6,7]. This
sphere, when mapped back to the data space, can separate
into several components, each enclosing a separate cluster
of points. More specifically, let {xi} ⊂ X be a given training
data set of X ⊂ Rn, the data space. Using a nonlinear
transformation � from X to some high dimensional feature
space, we look for the smallest enclosing sphere of radius
R described by the following model:

min R2 + C
∑
j

�j

s.t. ‖�(xj ) − a‖2 �R2 + �j ,

�j �0 for j = 1, . . . , N , (6)
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