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Abstract

This paper proposes a novel algorithm for image feature extraction, namely, the two-dimensional locality preserving projections (2DLPP),
which directly extracts the proper features from image matrices based on locality preserving criterion. Experimental results on the PolyU
palmprint database show the effectiveness of the proposed algorithm.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Locality preserving projections (LPP); Principal component analysis (PCA); Linear discriminant analysis (LDA); Palmprint recognition

1. Introduction

Locality preserving projections (LPP) is a recently pro-
posed method in image recognition for feature extraction
and dimension reduction. The objective of LPP is to pre-
serve the local structure of the image space by explicitly
considering the manifold structure, which is in fact to solve
a generalized eigenvalue problem [1]

XLXTa = �XDXTa. (1)

A difficulty in using the LPP method for image recogni-
tion is the high-dimensional nature of the image space, in
such a space, the XDXT matrix is always singular, which
makes the direct implementation of the LPP algorithm
impossible.

One possible solution to attack this problem is to utilize
the principal component analysis (PCA) as a preprocess-
ing step to reduce the dimensionality of the vector space,
which is known as Laplacianface algorithm and has been
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applied successfully to face representation and recognition
[1]. However, in the existing Laplacianface (PCA + LPP)
algorithm, several disadvantages should be pointed out:

(1) The 2D image matrices must be previously trans-
formed into 1D image vectors. The resulting image
vectors usually lead to a high-dimensional image vec-
tor space, where it is difficult to calculate the bases
to represent the original images, which is also called
the “curse of dimensionality” problem. This problem is
more apparent in small-sample-size cases such as image
recognition.

(2) Such a matrix-to-vector transform may cause the loss
of some structural information residing in original 2D im-
ages.

(3) In the PCA step of the Laplacianface algorithm, how
to determine the numbers of principal components is a hard
problem.

(4) In the Laplacianface algorithm, after all the image
vectors are projected into the subspace spanned by the prin-
cipal components, the LPP algorithm is then performed.
However, since the objective of the PCA and that of LPP are
essentially different, the preprocessing procedure to reduce
the dimensionality using the PCA could result in the loss
of some important information for the LPP algorithm that
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follows the PCA. To illustrate this problem, a brief proof is
given:

In [2], a locality preserving function f was defined as
follows:

f (a) = aTXLXTa

aTXDXTa
. (2)

The locality preserving function f (a) evaluates the locality
preserving power of the projective map a. Actually, in the
LPP algorithm aTXDXTa=1, then Eq. (2) can be reduced to

f (a) = aTXLXTa. (3)

In fact, XLXT is also singular [1], which implies that the
null space of XLXT contains valuable discriminatory infor-
mation; however, the PCA step may discard such projection
directions which satisfy f (a)=0. Now we can see that some
important information for the following LPP algorithm may
have been lost in the PCA step.

Inspired by Yang et al. [3], in this paper, an alternative
way is proposed to handle the above problems by directly
projecting the image matrix under a specific projection cri-
terion, rather than using the stretched image vector. Our al-
gorithm proposed here is a straightforward manner based on
locality preserving criterion and the image matrix projec-
tion. Experimental results on the PolyU palmprint database
show that the 2DLPP algorithm outperforms the conven-
tional PCA, PCA+LDA and PCA+LPP algorithms in terms
of the recognition performance rate. Our work will fit into
the scene for a better picture about LPP-based methods for
image recognition.

2. Two-dimensional locality preserving projections
(2DLPP)

2.1. The algorithm of 2DLPP

Like that of the vector-based LPP [1], the objective func-
tion of 2DLPP is defined as

min
∑
i,j

‖Yi − Yj‖2Sij , (4)

where Yi is the n-dimensional representation of m×n matrix
Xi , the matrix S is a similarity matrix, and ‖Q‖ means the
L2 norm. A possible way of defining S is as follows: Sij =
exp(−‖Xi − Xj‖2/t), if Xi is among k nearest neighbors
of Xj or Xj is among k nearest neighbors of Xi , otherwise,
Sij = 0.

Here, k defines the local neighborhood. The objective
function with this choice of symmetric weights Sij incurs a
heavy penalty if neighboring points Xi and Xj are mapped
far apart, i.e., if ‖Yi − Yj‖2 is large. Therefore, minimiz-
ing Eq. (4) is an attempt to ensure that, if Xi and Xj are
“close”, then Yi and Yj are close as well. Following some

matrix analysis steps, we can get
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where X = [X1, X2, . . . , Xk], and D is a diagonal matrix;
its entries are column or row sums of S. L = D − S is the
Laplacian matrix. Obviously, a trivial solution exists a = 0.
Therefore, a constraint aTXDXTa = 1 is added.

Then the minimization problem becomes

arg min
a

aTXLXTa S.t. aTXDXTa = 1. (6)

The Lagrange multiplier can be employed to transform
the above objective function to include the constraint

g(a, �) = aTXLXTa + �(1 − aTXDXTa). (7)

The solution of Eq. (6) can be found by letting �g/�a = 0.
Thus we can get

XLXTa = �XDXTa. (8)

Now the transformation vector a that minimizes the ob-
jective function is given by the minimum eigenvalue solu-
tion to this generalized eigenvalue problem.

It should be pointed out that Eqs. (8) and (1) may look
like the same to each other in that the calculating of S, D
and L is in the same way, however, they are quite different
in essence: in Eq. (8) X is matrix-based, while in Eq. (1) X
is vector-based.

2.2. Feature extraction

Let the column vectors a0, a1, . . . , al−1 be the solu-
tions of Eq. (8), ordered according to their eigenvalues
�0 < �1 < · · · < �l−1. Thus the ith embedding is as follows:

Yi = aT
i Xi , (9)
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