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Abstract

Algorithms for the analysis of graph sequences are proposed in this paper. In particular, we study the problem of recovering missing
information and predicting the occurrence of nodes and edges in time series of graphs. Two different recovery schemes are developed.
The first scheme uses reference patterns that are extracted from a training set of graph sequences, while the second method is based
on decision tree induction. Our work is motivated by applications in computer network analysis. However, the proposed recovery and
prediction schemes are generic and can be applied in other domains as well.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The aim of graph matching is to find an assignment of
the nodes and edges of two given graphs such that some op-
timality criterion is satisfied. Special instances of the graph
matching problem allow us to compute, among other quan-
tities, distance measures between two given graphs. A large
body of work on graph matching, dealing with both theory
and applications, has been published in the literature. For
representative collections of recent work see Refs. [1–4].
However, almost all published papers address the case of
only two graphs being matched with each other. In this pa-
per, we provide an extension and address the analysis of
graph sequences.

The work described in this paper is motivated by applica-
tions in computer network monitoring. The basic idea is to
represent a computer network by a graph, where the clients

∗ Corresponding author. Tel.: +41 31 631 44 51.
E-mail addresses: bunke@iam.unibe.ch (H. Bunke),

Peter.Dickinson@dsto.defence.gov.au (P. Dickinson),
irniger@iam.unibe.ch (C. Irniger), Miro.Kraetzl@dsto.defence.gov.au
(M. Kraetzl).

0031-3203/$30.00 � 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2005.10.011

and servers are modelled by nodes and the physical con-
nections correspond to edges. If the state of the network is
captured at regular points in time and represented as a graph,
a time series of graphs is obtained that formally represents
the network. In our previous work we have developed var-
ious procedures for the detection of anomalous events and
network behaviour [5]. These procedures are based on the
observation that abnormal network behaviour corresponds
to large distance between two consecutive graphs in a time
series. In the current paper we address a different problem,
viz. the recovery of incomplete network knowledge. Due to
various reasons it may happen that the state of a network
node or a network link cannot be properly captured dur-
ing network monitoring. This means that it is not known
whether or not a certain node or an edge is present in the
graph sequence at a certain point in time. In this paper we
describe procedures that are able to recover missing infor-
mation of this kind. These procedures are capable of making
a decision as to the presence or absence of such network
nodes and edges. Information recovery procedures of this
kind can also be used to predict, at time t, whether a certain
node or a certain link will be present, i.e. active, in the net-
work at the next point in time, t + 1. Such procedures are
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useful in computer network monitoring in situations where
one or more network probes have failed. Here the presence,
or absence, of certain nodes and edges is not known. In these
instances, the network management system would be unable
to compute an accurate measurement of network change
and would thus be unable to recognize abnormal network
behaviour. The techniques described in this paper can be
used to determine the likely status of this missing data and
hence improve reliability of abnormal change detection.

There exist a number of papers that are concerned with
modelling the topology of computer networks, especially
the Internet. In Ref. [6] a number of heuristics are described
that seem to be suitable to create an approximate map of
the Internet from a number of probes. In Refs. [7,8] it is
attempted to build a formal model of the Internet topology,
for example in terms of a power-law random graph [9]. In
contrast with these works, we do not intend to build any
model or any map and assume that the topology of the un-
derlying network is known. This assumption is justified in
applications that involve intranets. The goal of our work is
the recovery of missing information in such an environment.
That is, we want to make a statement as to whether or not a
particular node or link with unknown status is active or not
at a certain point in time.

Analysis of time series and prediction is a field that has
been intensively studied in the literature. Particular attention
has been paid to problems such as time series segmentation
[10], retrieval of sequences or partial sequences [11], index-
ing [12], classification of time series [13], detection of fre-
quent subsequences [14], periodicity detection [15] and pre-
diction [16–19]. However, in all these previous works a time
series is given in terms of symbols, numbers or vectors [20].
In the current paper we go a step further and consider pre-
diction schemes that operate on sequences of graphs. Node
as well as edge prediction in time series of graphs will be
addressed.

The paper is organized as follows. Basic terminology and
notation will be introduced in the next section. Then, in
Sections 3 and 4, we will describe two novel information
recovery and prediction procedures. Results of a number of
experiments with these new schemes will be presented in
Section 5. Finally, conclusions will be drawn in Section 6.

2. Basic concepts and notation

A labeled graph is a 4-tuple, g = (V , E, �, �), where V
is the finite set of nodes, E ⊆ V × V is the set of edges,
� : V → L is the node labelling function, and � : E → L′
is the edge labeling function, with L and L′ being the set of
node and edge labels, respectively. In this paper we focus our
attention on a special class of graphs that are characterized
by unique node labels. That is, for any two nodes, x, y ∈
V , if x �= y then �(x) �= �(y). Properties of this class
of graphs have been studied in Ref. [21]. In particular it
has been shown that problems such as graph isomorphism,
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Fig. 1. A graph with unique node labels.

subgraph isomorphism, maximum common subgraph, and
graph edit distance computation can be solved in time that
is only quadratic in the number of nodes of the larger of the
two graphs involved.

To represent graphs with unique node labels in a conve-
nient way, we drop set V and define each node in terms of
its unique label. Hence a graph with unique node labels can
be represented by a 3-tuple, g = (L, E, �) where L is the set
of node labels occurring in g, E ⊆ L×L is the set of edges,
and � : E → L′ is the edge labeling function [21]. The
terms “node label” and “node” will be used synonymously
in the remainder of this paper.

As an example, consider graph g in Fig. 1. Using tradi-
tional notation, this graph is represented by the 4-tuple g =
(V , E, �, �), where V ={1, 2, 3}; E={(1, 2), (2, 3), (3, 1)};
� : 1 �→ A, 2 �→ B, 3 �→ C; � : (1, 2) �→ a, (2, 3) �→
b, (3, 1) �→ a. Because all node labels are unique, we can
alternatively represent graph g by the 3-tuple g = (L, E, �),
where L = {A, B, C}; E = {(A, B), (B, C), (C, A)}; � :
(A, B) �→ a, (B, C) �→ b, (C, A) �→ a.

In this paper we will consider time series of graphs, i.e.
graph sequences, s = g1, g2, . . . , gN . The notation gi =
(Li, Ei, �i ) will be used to represent individual graph gi in
sequence s; i=1, . . . , N . Motivated by the computer network
analysis application considered in this paper, we assume the
existence of a universal set of node labels, or nodes, L, from
which all node labels that occur in a sequence s are drawn.
That is, Li ⊆ L for i = 1, . . . , N and L = ⋃N

i=1Li .1

As an example, consider sequence s = g1, g2, g3, where
graphs g1, g2 and g3 are depicted in Fig. 2. These graphs
are formally represented as follows:

• g1 = (L1, E1, �1); L1 ={A, B, C}; E1 ={(A, B), (B, C),

(C, A)};
• g2 =(L2, E2, �2); L2 ={A, B, D}; E2 ={(A, B), (B, D),

(D, A)};
• g3 =(L3, E3, �3); L3 ={A, D, C}; E3 ={(A, D), (D, C),

(C, A)}.
We assume that �1 = �2 = �3 = const and omit the edge
labels in Fig. 2. In this example we have L={A, B, C, D}.

Given a time series of graphs, s = g1, g2, . . . , gN , and its
corresponding universal set of node labels, L, we can repre-

1 In the computer network analysis application L will be, for example,
the set of all unique IP host addresses in the network. Note that in one
particular graph, gi , usually only a subset is actually present. In general,
L may be any finite or infinite set.
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