
Pattern Recognition 39 (2006) 624–634
www.elsevier.com/locate/patcog

A prototype classification method and its use in a hybrid solution
for multiclass pattern recognition

Chien-Hsing Choua, Chin-Chin Linb, Ying-Ho Liua, Fu Changa,∗
aInstitute of Information Science, Academia Sinica, 128 Section 2, Academia Road, Nankang, Taipei 115, Taiwan

bDepartment of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan

Received 12 October 2004; received in revised form 28 October 2005; accepted 28 October 2005

Abstract

In this paper, we propose a prototype classification method that employs a learning process to determine both the number and the
location of prototypes. This learning process decides whether to stop adding prototypes according to a certain termination condition, and
also adjusts the location of prototypes using either the K-means (KM) or the fuzzy c-means (FCM) clustering algorithms. When the
prototype classification method is applied, the support vector machine (SVM) method can be used to post-process the top-rank candidates
obtained during the prototype learning or matching process. We apply this hybrid solution to handwriting recognition and address the
convergence behavior and runtime consumption of the prototype construction process, and discuss how to combine our prototype classifier
with SVM classifiers to form an effective hybrid classifier.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Fuzzy c-means clustering algorithm; Handwritten character recognition; Hybrid classifier; K-means clustering algorithm; Prototype learning;
Support vector machine

1. Introduction

The support vector machine (SVM) classification method
[1] represents a major development in pattern recognition
research. Two innovations of SVM are responsible for the
success of this method, namely, the ability to find a hyper-
plane that divides samples into two groups with the widest
margin between them, and the extension of this concept to
a higher-dimensional setting using a kernel function to rep-
resent a similarity measure on that setting. Both innovations
can be formulated in a quadratic programming framework
whose optimal solution is obtained in a computation time of
a polynomial order. This makes SVM a practical and effec-
tive solution for many pattern recognition problems.

∗ Corresponding author. Tel.: +886 2 2788 3799X1819;
fax: +886 2 2782 4814.

E-mail addresses: ister@iis.sinica.edu.tw (C.-H. Chou),
erikson@iis.sinica.edu.tw (C.-C. Lin), daxliu@iis.sinica.edu.tw
(Y.-H. Liu), fchang@iis.sinica.edu.tw (F. Chang).

0031-3203/$30.00 � 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2005.10.022

SVM is essentially a method for binary classification,
in which each object is classified as one of two classes.
When dealing with a multiclass classification, in which each
object is classified as one of N classes, where N > 2, the
problem must be decomposed into binary classification sub-
problems and the SVM method must then be applied to
these sub-problems. Two useful approaches for decompos-
ing the problem are one-against-one [2] and DAGSVM [3].
In the training phase, both approaches require N(N − 1)/2
binary classification problems to be solved. In the testing
phase, the one-against-one approach conducts N(N − 1)/2
classifications, while DAGSVM employs a directed acyclic
graph with N(N − 1)/2 nodes and N leaves, which reduces
the number of classifications to N − 1. There is another de-
composition approach called one-against-all, or one-against-
others. In this approach, there are Nsub-problems, each of
which classifies an object as A or not A. Some comparative
work [4], and our own experience, show that this approach
requires more training time and more support vectors than
the other two approaches. In this paper, therefore, we only
consider the one-against-one and DAGSVM approaches.

http://www.elsevier.com/locate/patcog
mailto:ister@iis.sinica.edu.tw
mailto:erikson@iis.sinica.edu.tw
mailto:daxliu@iis.sinica.edu.tw
mailto:fchang@iis.sinica.edu.tw

C.-H. Chou et al. / Pattern Recognition 39 (2006) 624–634 625

When the number of classes N is large, both one-against-
one and DAGSVM incur an excessive amount of training
time and produce an extremely large set of support vec-
tors. However, these problems can be overcome by reduc-
ing the binary classification sub-problems to a much smaller
set. This can be done, for example, by way of the k-nearest
neighbor (k-NN) method [5–7], which matches each object
with all possible training samples and considers k-nearest
samples, k�1, in its classification decision. It has been
shown that the asymptotic error rate of k-NN is less than
twice the Bayes rate [8]. In many applications, k-NN does
indeed achieve good accuracy rates, although usually not as
good as those achieved by SVM. Because of the comple-
mentary properties of k-NN and SVM, we can use a hybrid
solution that first employs k-NN to determine the top-rank
candidates and then applies SVM to post-process them. By
so doing, we reduce the number of binary classification sub-
problems, since in most applications not all class types are
included in the top-rank candidates.

The k-NN method, however, is too slow for large-scale
applications and also requires storage of a large set of train-
ing samples in the memory. In this paper, we explore an
alternative solution by reducing training samples to a much
smaller set of prototypes that can be derived from training
samples in a learning process. If the training samples are
represented as vectors in D-dimensional Euclidean space,
prototypes can reside in the same space, although they are
not necessarily training samples. We use this prototype clas-
sification method, instead of the k-NN method in the hybrid
solution.

The merit of the hybrid solution is demonstrated by the
following example. In a handwriting application, training
an SVM classifier for 3036 character types out of 303,600
training samples takes 32 days on a PC with a Pentium
IV 2.4 GHz CPU and 2 GB RAM. In the testing phase,
DAGSVM requires 31.78 s to recognize a character and has
to store approximately 1.5 × 108 support vectors in the
memory. If, however, we use one of the hybrid approaches
proposed in this paper, it is only necessary to store 9678
prototypes (3.2% of the number of training samples), and
10,547,211 support vectors (7% of the total number of sup-
port vectors) that DAGSVM requires when it alone is used
for the classification. The substantial saving in computation
time is due to the fact that only 7.2% of class pairs require
further SVM post-processing, resulting in 60.9 h of training
time and only 0.04 s to recognize a character in the testing
phase.

We propose two learning algorithms to determine the
number and the location of prototypes. They differ in the
method used to adjust prototype locations, and in the stop-
ping criterion for the prototype construction process. The
first method employs the K-means (KM) clustering algo-
rithm to determine prototypes by way of samples that take
them as their nearest prototypes. In contrast, the second
method applies the fuzzy c-means (FCM) clustering algo-
rithm, which determines prototypes as a weighted average

of all samples, where the weight contributed by each sample
is inversely proportional to its distance from the prototypes.
We compare the convergence behavior and runtime perfor-
mance of these two learning algorithms. An important issue
is how to combine the prototype and SVM classifiers into
a computationally effective classifier and attain comparable
accuracy rates to those achieved by using SVM solely.

The remainder of this paper is organized as follows.
Section 2 contains the proposed learning algorithms used to
construct prototypes from training samples. In Section 3, we
describe the disambiguation process that uses SVM in the
training and testing phases. Section 4 details the application
of our hybrid solution to handwritten character recognition.
Finally, in Section 5, we present our conclusions.

2. Prototype-construction method

We assume that all training samples are represented as
vectors in D-dimensional Euclidean space. Prototypes are
also vectors in the same space, but they do not have to be
samples themselves. The distance between any two vectors
v = (v1, v2, . . . , vD) and w = (w1, w2, . . . , wD) is

‖v − w‖ =
[

D∑
d=1

(vd − wd)2

]1/2

. (1)

We propose two algorithms to determine the number and
the location of prototypes. Although employing a similar
learning process, they differ in the way the location of pro-
totypes is computed and in the criterion for stopping the
process. We first describe the process that uses KM to ad-
just the location of prototypes. Since KM is a crisp or non-
fuzzy method, it is referred to as a crisp construction process
(CCP). The steps of the process are as follows:

K1 Initiation: For each class type C, we use the statistical
average of all C-samples to initiate a C-prototype.

K2 Absorption: For each sample s, find the prototype p
that is nearest to s. If the class type of s matches the
class type of p, declare s as absorbed; otherwise, s is
unabsorbed. If all samples are absorbed, we terminate
the process; otherwise, we proceed to K3.

K3 Prototype augmentation: For each C, if there exist any
unabsorbed C-samples, we select one of them as a new
C-prototype; otherwise, no new prototype is added to
class type C.

K4 Prototype adjustment: For the C to which a new C-
prototype is added in K3, we apply KM to adjust all
C-prototypes, using the current C-prototypes as seeds.
We then proceed to K2.

In K3, an unabsorbed C-sample is selected as follows. We
focus on a set �C , consisting of unabsorbed C-samples that
are not themselves C-prototypes, and let each sample in �C

cast a vote to the nearest sample in �C . We then select the

Download	English	Version:

https://daneshyari.com/en/article/532950

Download	Persian	Version:

https://daneshyari.com/article/532950

Daneshyari.com

https://daneshyari.com/en/article/532950
https://daneshyari.com/article/532950
https://daneshyari.com/

