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Abstract

The aims of this paper are two-fold: to define Gaussian mixture models (GMMs) of colored texture on several feature spaces and
to compare the performance of these models in various classification tasks, both with each other and with other models popular in the
literature. We construct GMMs over a variety of different color and texture feature spaces, with a view to the retrieval of textured color
images from databases. We compare supervised classification results for different choices of color and texture features using the Vistex
database, and explore the best set of features and the best GMM configuration for this task. In addition we introduce several methods for
combining the ‘color’ and ‘structure’ information in order to improve the classification performances. We then apply the resulting models
to the classification of texture databases and to the classification of man-made and natural areas in aerial images. We compare the GMM
model with other models in the literature, and show an overall improvement in performance.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In many domains of image processing, there is a strong
correspondence between entities in the scene and textures1

in the image. This implies that the ability to recognize these
textures can furnish important semantic information about
the scene. Consequently, the problems of texture descrip-
tion and classification, and the closely related problem of
segmentation, have received considerable attention, with nu-
merous approaches being proposed (Refs. [1,2] and refer-
ences therein). In particular, in the field of content-based
image retrieval, the ability to answer the question: “Is there a
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significant amount of such-and-such texture in this image?”,
can be the basis for many types of query.

Two variations on the problem exist: supervised and unsu-
pervised segmentation. In the former, models of the texture
associated with different entities in the scene are assumed
known, and are then applied to the image in the hope of
segmenting it into regions corresponding to those entities.
Clearly this requires a training stage in which human beings
group texture exemplars into classes, corresponding to the
entities involved, from which the corresponding model pa-
rameters are then learnt. In the unsupervised case, no models
are known a priori. Instead, the aim is to discover similar-
ities in the data that betray the existence of one or more
distinct classes into which the data can be divided. This may
or may not involve explicitly learning the model parameters.
When the entities in the scene into which the image should
be segmented are not decided upon beforehand, as they of-
ten are not, unsupervised segmentation is methodologically
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ill-defined, since no specification of the ideal result is given.
In supervised segmentation on the other hand, texture classes
necessarily correspond to distinct entities in the scene, and
the success or failure of the segmentation can be decided on
this basis. In this paper, we consider the supervised texture
segmentation problem.

1.1. Literature

Many kinds of statistical models have been applied to
texture classification. These include Bayes classifiers as-
suming multivariate Gaussian distributions for the features
[3–6]; Fisher transformation [7,8]; nonparametric nearest-
neighbor classification [9–12]; classification trees [8]; learn-
ing vector quantization [13,14]; feed-forward neural net-
works [15]; and recently support vector machine [16,17]
and multiple histogram combined with self-organized map
[18] . In some earlier cases, the statistical modelling after
the feature extraction is just thresholding [19–22]; or sim-
ple extremum picking [23–25]. Markov random fields, and
especially Gaussian Markov random fields have been exten-
sively used for texture modelling and segmentation since the
early work in Ref. [26]. For a good review, see the paper
by Geman and Graffigne [27]. Li and Gray [28] proposed a
2D hidden Markov model (HMM) for image classification,
while a somewhat different model is the noncausal HMM
described in Ref. [29].

Another recent class of models uses hidden Markov trees
(HMTs) to model the joint statistics of wavelet coefficients.
Tree models sacrifice some descriptive power (usually only
inter- rather than intra-scale dependencies) to ease of imple-
mentation (many algorithms that work in the case of linear
graphs, also work on trees, but not on more complicated
models). HMT models were first introduced in Ref. [30],
and were applied to texture analysis in Refs. [31,32]. They
are typically used, even in texture applications, with binary-
valued hidden state variables that switch between high and
low variance Gaussian distributions for the wavelet coeffi-
cients. This behavior is intended to capture the difference
between edges and noisy but otherwise smooth regions in
images, an important distinction for ‘edge-preserving de-
noising’. Indeed, for denoising, HMTs result in state of the
art algorithms. It is not clear however, that they remain
appropriate for single textures, whose statistics may dif-
fer markedly from those for natural images considered as
a whole. In particular, the division into ‘edges’ and ‘noise’
seems strange in this context. HMTs are used in Ref. [33],
where texture and color are combined in an HMT model.
Texture is described using HMTs of grayscale wavelet coeffi-
cient magnitudes, while color is described using independent
Gaussian distributions at each scale for the colored scaling
coefficients.

In recent work [34], we proposed the use of Gaussian mix-
ture models (GMMs) for texture classification, demonstrat-
ing improved performance over other, computationally more

expensive methods. This paper is an extension of the work
presented there. In related but differently directed work,
Gray et al. [35] also used GMMs for image classification.

2. Classification, GMMs, and feature spaces

In this section, we describe in top-down fashion the mod-
els we will use. We begin with our general approach to the
classification problem, and continue by describing the place
of GMMs within that framework. Finally, we describe the
various feature spaces on which the GMMs are defined. We
assume throughout that we are dealing with N classes, la-
belled by n ∈ N .2

2.1. Classification

Any classification model is defined on the space N of
maps from the image domain to the set N of classes (each
class n corresponds to an entity of interest in the scene), the
possible ‘classifications’. Thus each classification � ∈ N
assigns a class n = �(p) ∈ N to each pixel p giving the
class of that pixel. By defining a posterior probability distri-
bution on N, and using a suitable loss function, an optimal
classification can be chosen. The loss function is more often
than not taken to be the negative of a delta function, the re-
sulting estimate then being a maximum a posteriori (MAP)
estimate. The posterior distribution is expressed as the (nor-
malized) product of a likelihood, such as the GMM models
that we will discuss in this paper, which gives the distribu-
tion of images corresponding to a given class, and a prior
probability distribution on the classifications.

Prior models for the classification � usually have a mini-
mum sub-image that can be analyzed. Typically such a model
assumes that the regions corresponding to classes are larger
than the minimum sub-image. A similar but different restric-
tion is that the neighboring pixels of a given pixel will be
with a higher probability from the same class than from an
other class. A standard choice for the prior is thus the Potts
model, which penalizes a classification by the total length
of class boundary it contains. Unfortunately, the use of such
a model renders the MAP estimation problem hard to solve,
at least rapidly. In order to avoid this problem of computa-
tional complexity while producing a similar effect, we use
two heuristics: we assume that � is constant on S ×S subim-
ages, called ‘blocks’, but that its values on different blocks
are independent and equiprobable; and we use a loss func-
tion/classification rule that incorporates a local ‘averaging’
of the class over block neighborhoods called ‘patches’. The
set of blocks in an image will be denoted B, and individual
blocks by b. The neighborhood patch P(b) of a block b is
the set of blocks in a larger T × T subimage with b at its
center.

2 Throughout we use an integer N to represent both the number itself
and the set {1, . . . , N}.
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