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Abstract

We present a factorial representation of Gaussian mixture models for observation densities in hidden Markov models
(HMMs), which uses the factorial learning in the HMM framework. We derive the reestimation formulas for estimating the
factorized parameters by the Expectation Maximization (EM) algorithm and propose a novel method for initializing them.
To compare the performances of the proposed models with that of the factorial hidden Markov models and HMMs, we have
carried out extensive experiments which show that this modelling approach is effective and robust.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Many real-world observed data are characterized by mul-
tiple coupled causes orfactors. For instance, face images
may be generated by combining eyebrows, eyes, nose and
mouth. Recently Zemel and Hinton proposed a factorial
learning architecture[1,2] to deal with factorial data. The
goal of factorial learning is to to discover the multiple un-
derlying causes from the observed data and find a repre-
sentation that will both parsimoniously describe the data
and reflect the underlying causes. Hidden Markov models
(HMMs) are probabilistic models that can describe sequen-
tial data effectively and have been successfully used in many
applications, such as pattern recognition and speech recog-
nition [3]. Williams and Hinton[4] proposed generalizing
HMMs through the use of distributed state representations in
order to promote the representational efficiency of HMMs.
Ghahramani and Jordan[5] studied a special case of this
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generalization referred to as the factorial hidden Markov
models (FHMMs), and considered the use of FHMMs for
summarizing sequential data caused by multi-factors. FH-
MMs have been applied to a simple speech recognition task
in Ref. [6] with mixed results. FHMMs use Gaussian den-
sity functions as output densities and a common covariance
matrix for all the Gaussian density functions. However, the
Gaussian distribution assumption of FHMMs does not ade-
quately reflect the nature of real-world data: First, because
of their squared exponent, Gaussian density values decay too
fast when the observable variable deviates from its mean.
Second, variations exist in data; for example, speech signals
from multi-speakers, face images from different persons. In
such cases, the corresponding probability distributions are
generally multimodels. In practice, Gaussian mixture mod-
els are used for approximating output data[7,8]. Unfortu-
nately, there is no obvious way of incorporating Gaussian
mixtures in the framework of FHMMs[5]. Moreover, the
requirement for a common covariance is too restrictive in
most applications.

In this paper, we present a new approach that uses fac-
torial learning in the HMM framework. The state with a
mixture density in the HMM can be represented in terms
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of multi-substates with a single mixture density (see Sec-
tion 3). We factor these substates into multi-substate vari-
ables; each single mixture density depends on all the fac-
tored multi-substate variables. We introduce a method to
combine the mean and covariance matrix of each compo-
nent in the Gaussian mixture model from different factored
parameters. In this way, we can make use of the factored
Gaussian mixture models as the output probability density
functions (pdfs) for the HMM.

In Section 2, we briefly discuss HMMs and FHMMs.
Section 3 describes the factorial representation for Gaussian
mixture model for HMMs and presents the parameter esti-
mation process. In Section 4, we present experimental re-
sults comparing HMMs with different output density models
to show the model quality. In Section 5, we give a general
summary and discuss further research directions.

2. Hidden Markov models and factorial hidden
Markov models

The HMM is a probabilistic model that is able to de-
scribe time sequence effectively. Each state in HMM can
be thought of as representing particular patterns or regions
of sequential data. The probability that an observation has
been generated given the model is:

P(Y |�)

=
∑
S

P (S1)P (Y1|S1)
T∏
t=2

P(St |St−1)P (Yt |St ), (1)

whereT is the length of observation sequence (total num-
ber of time steps);Y = {Y1, Y2, . . . , YT } a sequence of
possible vector observation;K the number of states;S =
{S1, S2, . . . , ST } a sequence of hidden state variables gener-
atingY, St can take one ofK discrete value;P(St =j |St−1=
i) is the transition probability from timet − 1 being statei
to time t being statej, is specified by aK × K matrixAij ;
P(S1 = i) the probability of being inith state at timet = 1,
also denoted asai ; P(Yt |St ) the pdf of the output vector
given the stateSt , typically modeled as a mixture of Gaus-
sians; and� the compact notation to indicate the complete
parameters.

Fig. 1 shows the conditional independence specified by
Eq. (1). The HMM can be viewed as a generalization of
mixture models: in addition to the mixture components, the
HMM is made up of a series of discrete states and a set of
transition probabilities between the states. As for the HMM
whose output densities belong to the mixture model distri-
bution at timet, the sequential data will stay in stateSt and a
group of mixture components with weights attached to this
state are active to account for the data att; and at timet +1,
a new group of active components with weights attached to
stateSt+1 are selected according to the transition probabil-
ities. In contrast, for HMMs whose output densities belong
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Yt-1 Yt Yt+1

Fig. 1. Dynamic belief network representation of a HMM.
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Fig. 2. Dynamic belief network representation of a FHMM with
three Markov chains.

to a single-model distribution, at timet, only one mixture
component is active to represent the data att.

The factorial HMM is an extension of the traditional
HMM in that it consists of multiple hidden Markov chains
as illustrated inFig. 2. The state of each chain is a single
multinomial variable that can take one ofK discrete val-
ues. Each chain has independent dynamics. The output of
the model in each time step is, however, dependent on the
values of the state variables of all the chains. In Ref.[5]
this is achieved by constructing ameta-statecomposed of
M discrete state variables as follows:

St = S
(1)
t , . . . , S

(m)
t , . . . , S

(M)
t ,

whereM is the number of chains andS(m)
t is the state of

mth chain at timet. The state space of FHMMs consists of
the cross product of these state variables. There are total
KM meta-states representing the time sequence. The output
of the meta-state belongs to a Gaussian distribution with
the mean being a linear combination of the state means.
The transition between the meta-states is the product of the
transitions between the states of the same chain. Since the
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